Давление уменьшается объем увеличивается температура

Изопроцессы

Давление уменьшается объем увеличивается температура

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: изопроцессы — изотермический, изохорный, изобарный процессы

На протяжении этого листка мы будем придерживаться следующего предположения: масса и химический состав газа остаются неизменными. Иными словами, мы считаем, что:

• , то есть нет утечки газа из сосуда или, наоборот, притока газа в сосуд;

• , то есть частицы газа не испытывают каких-либо изменений (скажем, отсутствует диссоциация — распад молекул на атомы).

Эти два условия выполняются в очень многих физически интересных ситуациях (например, в простых моделях тепловых двигателей) и потому вполне заслуживают отдельного рассмотрения.

Если масса газа и его молярная масса фиксированы, то состояние газа определяется тремя макроскопическими параметрами: давлением, объёмом и температурой. Эти параметры связаны друг с другом уравнением состояния (уравнением Менделеева — Клапейрона).

Термодинамический процесс (или просто процесс) — это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров — давления, объёма и температуры.

Особый интерес представляют изопроцессы — термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

1. Изотермический процесс идёт при постоянной температуре газа: .
2. Изобарный процесс идёт при постоянном давлении газа: .
3. Изохорный процесс идёт при постоянном объёме газа: .

Изопроцессы описываются очень простыми законами Бойля — Мариотта, Гей-Люссака и Шарля. Давайте перейдём к их изучению.

Изотермический процесс

Пусть идеальный газ совершает изотермический процесс при температуре . В ходе процесса меняются только давление газа и его объём.

Рассмотрим два произвольных состояния газа: в одном из них значения макроскопических параметров равны , а во втором — . Эти значения связаны уравнением Менделеева-Клапейрона:

Как мы сказали с самого начала,масса и молярная масса предполагаются неизменными.

Поэтому правые части выписанных уравнений равны. Следовательно, равны и левые части:

(1)

Поскольку два состояния газа были выбраны произвольно, мы можем заключить, что в ходе изотермического процесса произведение давления газа на его объём остаётся постоянным:

(2)

Данное утверждение называется законом Бойля — Мариотта.

Записав закон Бойля — Мариотта в виде

(3)

можно дать и такую формулировку: в изотермическом процессе давление газа обратно пропорционально его объёму. Если, например, при изотермическом расширении газа его объём увеличивается в три раза, то давление газа при этом в три раза уменьшается.

Как объяснить обратную зависимость давления от объёма с физической точки зрения? При постоянной температуре остаётся неизменной средняя кинетическая энергия молекул газа, то есть, попросту говоря, не меняется сила ударов молекул о стенки сосуда.

При увеличении объёма концентрация молекул уменьшается, и соответственно уменьшается число ударов молекул в единицу времени на единицу площади стенки — давление газа падает.

Наоборот, при уменьшении объёма концентрация молекул возрастает, их удары сыпятся чаще и давление газа увеличивается.

Графики изотермического процесса

Вообще, графики термодинамических процессов принято изображать в следующих системах координат:

• -диаграмма: ось абсцисс , ось ординат ;
• -диаграмма: ось абсцисс , ось ординат ;
• -диаграмма: ось абсцисс , ось ординат .

График изотермического процесса называется изотермой.

Изотерма на -диаграмме — это график обратно пропорциональной зависимости .

Такой график является гиперболой (вспомните алгебру — график функции ). Изотерма-гипербола изображена на рис. 1.

Рис. 1. Изотерма на -диаграмме

Каждая изотерма отвечает определённому фиксированному значению температуры. Оказывается, что чем выше температура, тем выше лежит соответствующая изотерма на -диаграмме.

В самом деле, рассмотрим два изотермических процесса, совершаемых одним и тем же газом (рис. 2). Первый процесс идёт при температуре , второй — при температуре .

Рис. 2. Чем выше температура, тем выше изотерма

Фиксируем некоторое значение объёма . На первой изотерме ему отвечает давление , на второй — . Но при фиксированном объёме давление тем больше, чем выше температура (молекулы начинают сильнее бить по стенкам). Значит, .

В оставшихся двух системах координат изотерма выглядит очень просто: это прямая, перпендикулярная оси (рис. 3):

Рис. 3. Изотермы на и -диаграммах

Изобарный процесс

Напомним ещё раз, что изобарный процесс — это процесс, проходящий при постоянном давлении. В ходе изобарного процесса меняются лишь объём газа и его температура.

Типичный пример изобарного процесса: газ находится под массивным поршнем, который может свободно перемещаться. Если масса поршня и поперечное сечение поршня , то давление газа всё время постоянно и равно

где — атмосферное давление.

Пусть идеальный газ совершает изобарный процесс при давлении . Снова рассмотрим два произвольных состояния газа; на этот раз значения макроскопических параметров будут равны и .

Выпишем уравнения состояния:

Поделив их друг на друга, получим:

В принципе, уже и этого могло бы быть достаточно, но мы пойдём немного дальше. Перепишем полученное соотношение так, чтобы в одной части фигурировали только параметры первого состояния, а в другой части — только параметры второго состояния (иными словами, «разнесём индексы» по разным частям):

(4)

А отсюда теперь — ввиду произвольности выбора состояний! — получаем закон Гей-Люссака:

(5)

Иными словами, при постоянном давлении газа его объём прямо пропорционален температуре:

(6)

Почему объём растёт с ростом температуры? При повышении температуры молекулы начинают бить сильнее и приподнимают поршень. При этом концентрация молекул падает, удары становятся реже, так что в итоге давление сохраняет прежнее значение.

Графики изобарного процесса

График изобарного процесса называется изобарой. На -диаграмме изобара является прямой линией (рис. 4):

Рис. 4. Изобара на -диаграмме

Пунктирный участок графика означает, что в случае реального газа при достаточно низких температурах модель идеального газа (а вместе с ней и закон Гей-Люссака) перестаёт работать.

В самом деле, при снижении температуры частицы газа двигаются всё медленнее, и силы межмолекулярного взаимодействия оказывают всё более существенное влияние на их движение (аналогия: медленный мяч легче поймать, чем быстрый).

Ну а при совсем уж низких температурах газы и вовсе превращаются в жидкости.

Разберёмся теперь, как меняется положение изобары при изменении давления. Оказывается, что чем больше давление, тем ниже идёт изобара на -диаграмме.
Чтобы убедиться в этом, рассмотрим две изобары с давлениями и (рис. 5):

Рис. 5. Чем ниже изобара, тем больше давление

Зафиксируем некоторое значение температуры . Мы видим, что . Но при фиксированной температуре объём тем меньше, чем больше давление (закон Бойля — Мариотта!).

Стало быть, .

В оставшихся двух системах координат изобара является прямой линией, перпендикулярной оси (рис. 6):

Рис. 6. Изобары на и -диаграммах

Изохорный процесс

Изохорный процесс, напомним, — это процесс, проходящий при постоянном объёме. При изохорном процессе меняются только давление газа и его температура.

Изохорный процесс представить себе очень просто: это процесс, идущий в жёстком сосуде фиксированного объёма (или в цилиндре под поршнем, когда поршень закреплён).

Пусть идеальный газ совершает изохорный процесс в сосуде объёмом . Опять-таки рассмотрим два произвольных состояния газа с параметрами и . Имеем:

Делим эти уравнения друг на друга:

Как и при выводе закона Гей-Люссака, «разносим» индексы в разные части:

(7)

Ввиду произвольности выбора состояний мы приходим к закону Шарля:

(8)

Иными словами, при постоянном объёме газа его давление прямо пропорционально температуре:

(9)

Увеличение давления газа фиксированного объёма при его нагревании — вещь совершенно очевидная с физической точки зрения. Вы сами легко это объясните.

Графики изохорного процесса

График изохорного процесса называется изохорой. На -диаграмме изохора является прямой линией (рис. 7):

Рис. 7. Изохора на -диаграмме

Смысл пунктирного участка тот же: неадекватность модели идеального газа при низких температурах.

Далее, чем больше объём, тем ниже идёт изохора на -диаграмме (рис. 8):

Рис. 8. Чем ниже изохора, тем больше объём

Доказательство аналогично предыдущему. Фиксируем температуру и видим, что . Но при фиксированной температуре давление тем меньше, чем больше объём (снова закон Бойля — Мариотта). Стало быть, .

В оставшихся двух системах координат изохора является прямой линией, перпендикулярной оси (рис. 9):

Рис. 9. Изохоры на и -диаграммах

Законы Бойля — Мариотта, Гей-Люссака и Шарля называются также газовыми законами.

Мы вывели газовые законы из уравнения Менделеева — Клапейрона. Но исторически всё было наоборот: газовые законы были установлены экспериментально, и намного раньше. Уравнение состояния появилось впоследствии как их обобщение.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/izoprocessy/

Задание 11. Термодинамика и МКТ. Изменения физических величин в процессах – Служебный Дом

Давление уменьшается объем увеличивается температура
КПД тепловой машины.

Если понизить температуру холодильник при неизменной температуре нагревателя, КПД идеальной тепловой машины увеличится.

η=(1-Tх/Tн)*100% – зависимость КПД тепловой машины от температуры нагревателя и холодильника.

η=((Тн-Тх)/Тн)*100% – развёрнутая формула.

В абсолютном смысле, КПД связан с работой газа А и количеством теплоты Q, полученным газом за цикл, соотношением: η=(A/Q)*100%

Qхол=Q-A

Qхол – количество теплоты, отданное холодильнику.

Поскольку при понижении температуры холодильника количество теплоты, полученное газом от нагревателя за цикл, не изменяется, заключаем, что работа газа за цикл увеличивается. Отданное количество теплоты холодильнику можно найти, вычитая из количества затраченной теплоты  совершённую работу.

Если повысить температуру холодильника при неизменной температуре нагревателя, КПД идеальной тепловой машины уменьшится (см. формулу в рамке слева).

КПД связан с работой газа и количеством теплоты, полученным газом за цикл, отношением количества совершённой работы к количеству затраченной теплоты.

Таким образом, при повышении температуры холодильника работа газа за цикл уменьшится. Количество теплоты, отданное холодильнику, увеличится.

Совершённой за цикл механической работе тепловой машины на диаграмме p-V соответствует площадь внутри цикла на диаграмме.

Если площадь двух равных циклов одинакова, значит одинакова и работа, совершённая в этих циклах. При увеличении давления, а также при увеличении объёма неизменного количества газа, его температура увеличивается.

И напротив, при уменьшении объёма, а также при уменьшении давления, температура тоже уменьшается.

При изохорном увеличении давления температура газа увеличивается так, что всё поступающее от нагревателя тепло, расходуется на увеличение внутренней энергии, без совершения работы: Q=ΔU=(3/2)vRΔT.

При изобарном уменьшении объёма, всё поступающее тепло расходуется на увеличение объёма, без изменения внутренней энергии: Q=A=p0(V2-V1). Если в результате изменения цикла работа газа не изменяется, а передаваемое от нагревателя количество теплоты увеличивается, то КПД тепловой машины уменьшается.

Характеристики газа в закрытом сосуде

Для газа в герметично закрытом сосуде соблюдаются законы изохорных процессов. При изохорном охлаждении давление газа уменьшается, так как уменьшается кинетическая энергия молекул, а объём не меняется.

Плотность газа не изменяется, так как не меняется объём, занимаемый газом, и не изменяется количество газа.

Внутренняя энергия, как было отмечено, уменьшается, так как для фиксированного количества вещества зависит только от его температуры.

U=(i/2)vRT, где i – число степеней свободы газа.

 Если же газ из сосуда выпускать или выкачивать наружу, то его количество в сосуде будет уменьшаться. Значит давление в сосуде будет уменьшаться, так как прежний объем занимает меньшее количество газа.

Внутренняя энергия содержимого уменьшится, так как уменьшится количество молекул, а именно они и являются носителями этой энергии. Температура не изменится, если с внешней средой будет установлено тепловое равновесие (сначала температура снизится по идее, но потом извне поступит тепло).

Если же сказано, что после выпускания газа давление в сосуде осталось неизменным, а плотность и количество уменьшились, значит была увеличена температура газа.

При изохорном нагревании концентрация молекул газа не изменяется; внутренняя энергия увеличивается, поскольку для фиксированного одноатомного идеального газаона зависит только от температуры: ΔU=(3/2)vRT.

Поскольку объём фиксирован, теплоёмкость зависит только от количесвта теплоты и изменения температуры: c=Q/ΔT=ΔU/ΔT, так как всё поступающее  тепло расходуется только на изменение внутренней энергии, ведь газ не совершает работу.

В итоге все величины, от которых зависит теплоёмкость, в данном случае не изменяются, а значит и теплоёмкость не изменяется.

При изохорном уменьшении температуры, давление газа уменьшается, объём не изменяется, внутренняя энергия уменьшается. Внутренняя энергия в данном случае зависит только от температуры.

В изохорном процессе при неизменном количестве вещества, по закону Шарля, p/T=const.

Характеристика газа с постоянным давлением

Процессы, происходящие при постоянном давлении, называются изобарными.

При изобарном нагреванииV/T=const, значит объём газа увеличивается. Плотность обратно пропорциональна объёму и, так как количество газа не меняется, плотность газа уменьшается. Внутренняя энергия с увеличением температуры увеличивается.

При изобарном процессе, давление газа не меняется, при увеличении температуры объём увеличивается.

в изобарном процессе при неизменном количестве вещества,по закону Гей-Люссака, V/T=const.

Изотермические процессы

При изотермическом расширении температура газа остаётся неизменной, объём газа увеличивается, давление газа уменьшается, поскольку в изотермических процессах величина pV не изменяется, так как pV~T, T=const.

В изотермическом процессе при неизменном количестве вещества по закону Бойля-Мариотта, pV=const.

Адиабатические процессы

При адиабатическом увеличении объёма сосуда, температура уменьшается. Дело в том, что при расширении газ совершает работу, теплообмен с внешней средой отсутствует ,а значит внутренняя энергия уменьшается: Q=ΔU+A; ΔU=-A, т.к. Q=0 при адиабатическом процессе.

Температура газа зависит только от его внутренней энергии, а значит, уменьшается. Объём увеличивается, а количество молекул газа не изменяется, а значит уменьшается концентрация: n=N/V. Давление связано с концентрацией молекул и температурой соотношением p=nKT.

Таким образом, при адиабатическом увеличении объёма, давление уменьшится.

Внутренняя энергия, работа, температура

Согласно первому началу термодинамики, переданное газу количество теплоты идёт на изменение его внутренней энергии, а также на совершение газом работы против внешних сил: Q=ΔU+A.

Всё переданное газу количество теплоты идёт на совершение газом работы при изотермическом процессе, так как при постоянной температуре внутренняя энергия не изменяется. При изохорном процессе изменение внутренней энергии газа равно количеству переданной теплоты, так как при постоянном объёме газ не совершает работу.

При совершении газом положительной работы, его объём увеличивается, давление уменьшается (при изотермическом процессе), внутренняя энергия не изменяется.

Согласно первому началу термодинамики, внутреннюю энергию тела можно изменить, совершая над газом работу или передавая ему тепло. При плавлении льда, его температура не изменяется, а внутренняя энергия увеличивается. При выделении же тепла, внутренняя энергия вещества уменьшается. При кристаллизации воды, её температура не меняется, а внутренняя энергия уменьшается: Q=λm.

Температура при плавлении остаётся постоянной, поэтому постоянной будет и средняя кинетическая энергия движения молекул, но изменяется потенциальная энергия их взаимодействия.

Следовательно, изменяется и сумма всех кинетических и потенциальных энергий всех молекул (внутренняя энергия).

Из-за изменения взаимодействия молекул при кристаллизации уменьшается внутренняя энергия, а при плавлении – увеличивается.

Внутренняя энергия одноатомного идеального газа связана с его температурой соотношением U=(3/2)vRT. Следовательно, температура равна T=2U/(3vR). Давление, температура и занимаемый газом объём не независимы, они связаны уравнением состояния Менделеева-Клапейрона: pV=vRT. Таким образом, давление газа равно p=vRT/V=(2/3)*(U/V).

При изотермическом процессе, температура остаётся неизменной, поэтому внутренняя энергия идеального газа не меняется, а значит, согласно первому началу термодинамики, всё переданное тепло полностью превращается в работу.

При изобарном процессе, давление не изменяется, но меняются как температура, так и объём газа, а значит при передаче газу тепла в данном процессе, газ совершает работу, нагреваясь при этом, то есть кроме совершения работы, происходит увеличение внутренней энергии.

При изохорном процессе объём газа фиксирован, значит газ не может совершать работу, следовательно всё поступающее тепло идёт на увеличение внутренней энергии.

При постоянном давлении изменение внутренней энергии прямо пропорционально изменению объёма газа, так как внутренняя энергия напрямую зависит от температуры. Внутренняя энергия уменьшается с потерей температуры. Если изменение внутренней энергии положительно, значит абсолютная температура тела уменьшилась.

Теплоёмкость газа постоянна.

Насыщенный пар

При изотермическом уменьшении объёма сосуда с насыщенным паром, давление в сосуде не изменяется, масса конденсированной воды увеличивается, масса пара уменьшается.

Это объясняется тем, что в данном процессе пар конденсируется и его концентрация не изменяется, но уменьшается объём (давление не меняется в отсутствии воздуха; в присутствии воздуха, суммарное давление газов увеличивается, парциальное давление пара не изменяется, парциальное давление воздуха увеличивается).

Сосуд с поршнем

p=mg/S

m – масса поршня;

g – ускорение свободного падения;

s – площадь поршня

Если система находится под атмосферным давлением, то давление газа под поршнем равно сумме давление поршня и атмосферного давления

При добавлении газа в сосуд с подвижным свободным поршнем, объём газа увеличивается, давление не изменяется. Поршень находится в равновесии, а значит pатмS+mg=pгазаS, так как поршень покоится.

Увеличение количества вещества при неизменной температуре и давлении приведёт к увеличению объёма. Архимедова сила определяется плотностью среды, в которую помещено тело: FA=ρgVтела. Поскольку плотность газа не изменяется, сила Архимеда тоже неизменна.

При охлаждении газа под свободным поршнем, объём газа уменьшается, так как идёт изобарный процесс.

Давление не изменится, а Архимедова сила, действующая на тело, находящееся в сосуде, увеличится, так как при уменьшении объёма количество газа осталось прежним, значит концентрация увеличилась, следовательно, увеличилась плотность газа, а сила Архимеда с увеличением плотности, увеличилась.

В газе, находящемся под свободным поршнем все процессы происходят изобарически. Переданное тепло идёт на работу газа против внешних сил, а также на увеличение внутренней энергии, а значит и температуры.

В результате изобарного расширения, да и вообще любого расширения газа, с фиксированным количеством вещества, концентрация молекул уменьшается.

Испарение жидкости

Испарение жидкости, в отличие от кипения, происходит при любой температуре. Процесс испарения воды представляет собой вылет молекул воды с поверхности жидкости.

При этом преимущественно вылетают самые быстрые молекулы, и средняя кинетическая энергия движения молекул воды в сосуде уменьшается, а значит, уменьшается и температура жидкости, что можно подтвердить с помощью термометра (данный эффект используется для измерения влажности окружающего воздуха при помощи психрометра).

Присутствует и обратный процесс, конденсация, но при относительной влажности воздуха ниже 100% процесс испарения преобладает. Если относительная влажность воздуха равна 100%, то количество испаряющихся в единицу времени молекул равно количеству конденсирующихся, а значит в среднем в сосуде количество молекул не изменяется.

Если относительная влажность воздуха менее 100%, то количество молекул в сосуде постепенно уменьшается, а значит уменьшается внутренняя энергия и температура воды. При плавлении и кипении же температура не изменяется, но изменяется внутренняя энергия вещества.

При испарении без кипения, чтобы молекулы жидкости переходили из жидкого состояния в газообразное, им тоже нужна добавка к энергии, которая идёт за счёт уменьшения средней энергии движения оставшихся молекул, в результате чего температура жидкости уменьшается.

при испарении жидкости без кипения, температура пара увеличивается, а температура жидкости уменьшается.

Тепловое равновесие

При установлении теплового равновесия, температуры всех тел сравниваются. Внутренние энергии тел разной температуры при тепловом контакте изменяются: внутренняя энергия горячего ела уменьшается, а холодного – увеличивается. Суммарная внутренняя энергия замкнутой системы не изменяется (по закону сохранения энергии).

Изохорный процесс

При постоянном объёме с увеличением внутренней энергии давление увеличивается прямо пропорционально.

Плавление и кристаллизация

Если 1 кг льда при температуре 0°С передать 330 кДж энергии (удельная теплота плавления льда равна 330 кДж/кг), то вся энергия будет израсходована на плавление, весь лёд растает. При этом его температура не изменится, внутренняя энергия увеличится, объём уменьшится. при кристаллизации же напротив, внутренняя энергия уменьшится, температура не изменится, объём увеличится.

Если в тёплую воду погрузить кусок льда, то когда он растает, уровень воды не изменится по сравнению с тем, что был тогда, когда погрузили лёд, так как несмотря на то, что объём льда уменьшился, его плотность была меньше, чем у воды, и он плавал на поверхности, вытесняя такой объём жидкости, который потом сам займёт, когда растает.

Источник: https://www.sites.google.com/site/sluzebnyjdom/fizika/podgotovka-k-ekzamenam/zadanie-11

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.