Измерение давления в полостях сердца

Некоторые методы определения давления и скорости движения крови

Измерение давления в полостях сердца

Прямое измерение давления крови осуществляется введением ка­тетера непосредственно в кровеносный сосуд или полость сердца.

Ка­тетер заполняется изотоническим раствором и передает давление кро­ви с вводимого конца на внешний измерительный прибор или устройство автоматизированной обработки данных. Прямая манометрия – прак­тически единственный метод измерения давления в полостях сердца и центральных сосудах.

Венозное давление надежно измеряется так же прямым методом. Основной недостаток прямых измерений очевиден – это необходимость введения измерительных устройств в полость сосуда.

Непрямое измерение давления крови производится без нарушения целостности сосудов и тканей. В подавляющем большинстве непрямые методы являютсякомпрессионными – они основаны на уравновешивании давления внутри сосуда измеряемым внешним давлением на его стенку.

Простейшим из таких методов является пальпаторный способ оп­ределения систолического артериального давления, предложенныйРи­ва-Роччи. При его осуществлении на среднюю часть плеча накладывают компрессионную манжету. Давление воздуха в манжете измеряется с помощью манометра.

Накачиванием воздуха в манжету давление в ней быстро поднимается до значения, превышающего систолическое. Затем воздух из манжеты медленно выпускают, одновременно наблюдая за по­явлением пульса в лучевой артерии.

Зафиксировав пальпаторно появ­ление пульса, отмечают в этот момент значение давления в манжете, которое и соответствует систолическому давлению.

Аускультативный метод имеет наибольшее распространение и ос­нован на установлении систолического и диастолического давления по возникновению и исчезновению в артерии особых звуковых явлений – тонов Короткова.

Так же как и в методе Рива-Роччи, на область пле­ча накладывается компрессионная манжета М (см. рис.22), в которую накачивается воздух, создавая давление, большее систолического. В это время (а) тоны Короткова не обнаруживаются.

При выходе воздуха из манжеты просвет сосуда увеличивается и при равенстве наружного давления систолическому возникают характерные звуки, прослушивае­мые с помощью фонендоскопа Ф. В этот момент (б) по манометру опре­деляю систолическое давление.

Момент исчезновения шумов (в) соот­ветствует равенству измеряемого наружного давления диастолическому.

Аускультативный метод реализуется в различных вариантах. В частности, в измерителях давления тоны Короткова могут восприни­маться микрофоном, преобразующим звуковые воздействия в электри­ческие сигналы, поступающие на регистрирующее устройство.

На циф­ровом табло регистратора указываются значения систoлического и ди­астолического давления.

В некоторых приборах изменения в движении стенок артерии при систолическом и диастолическом давлении (сопровождающиеся возникновением и исчезновением тонов Короткова) опре­деляются с помощью ультразвуковой локации и эффекта Доплера.

Рассмотрим теперь основы некоторых физических методов опреде­ления скорости кровотока.

Метод, основанный на эффекте Доплера. Физическая основа этого метода была рассмотрена в разделе 9 части 1 этого пособия.

Ещё раз подчеркнем, что его широкое клиническое применение обусловлено неинвазивностью, высокой точностью и возможностью использования для исследования различных гемодинамических процессов.

В частности, поскольку ультразвуковая волна обладает малой длиной и, сле­довательно, может быть сфокусирована на малую площадь, становится возможным определять скорость крови локально в отдельных узких участках сосудистой системы и даже скорость движения различных слоёв крови в отдельном сосуде.

Электромагнитный метод осно­ван на физическом явлении, на­зываемом эффектом Холла. Его сущность поясняет рис.23. Пусть в некоторой проводящей электрический ток среде со скоростью v движутся электри­ческие заряды (на рис.23 в направлении слева направо).

Если эту среду поместить в магнитное поле с индукцией В, направленной перпендикулярно направлению скорости движения зарядов, то на заряды будет действовать сила Лоренца , равная по величине
Fл = q v B, где q – величина заряда.

Под действием этой силы происходит отклонение положительных зарядов в одну сторону, а отрицательных – в противоположную, как показано на рис.24. Таким об­разом, из-за происходящего под действием магнитного поля разделе­ния зарядов, на поверхности среды возникает разность потенциалов U (холловское напряжение).

Ее величина пропорциональна значению силы Лоренца , а, следовательно, скорости движения заряженных частиц v.

Поскольку в крови имеются положительные и отрицательные ионы, этот эффект проявляется и в движущейся по сосуду крови. Из измеря­емой разности потенциалов можно определить линейную скорость кро­вотока.

Методы определения скорости движения крови, основанные на описанном принципе, удобно применять в тех случаях, когда возможен непос­редственный контакт электродов соответствующего измерительного устройства со стенками сосуда (при использовании аппаратов искусс­твенного кровообращения, гемосорбции, гемодиализа, в ходе хирурги­ческих операций).

Термоэлектрические методы основаны на измерениях степени наг­рева тканей в зависимости от их кровенаполнения.

Для измерения ис­пользуются термоэлектрические датчики, в которых разница темпера­тур на концах термопары (два различных проводника спаянные своими концами) порождает электрический сигнал (термоэлектрический эф­фект).

Температура одного из спаев поддерживается постоянной, а второй контактирует с поверхностью ткани. Изменения кровенаполне­ния вызывают изменения температуры контактирующего с тканью конца термопары и, следовательно, отражаются на величине возникающего электрического сигнала.

При использованиирадионуклидных методов в кровь вводят опре­деленное количество радиоактивного препарата. Концентрация этого препарата в крови зависти от степени его разбавления в объеме цир­кулирующей крови, доставляющей препарат к определенному участку организма.

Чем больше объемная скорость крови, тем быстрее происхо­дит разбавление. препарата устанавливается по измерению интенсивности гамма-излучения с помощью счетчика гамма-квантов. По изменению концентрации со временем после соответствующей обработки данных определяется скорость кровотока.

Вместо радиоактивного вещества могут быть введены другие индикаторы (краситель, холодная жидкость и др.).

Тогда степень раз­бавления индикатора, определяемая скоростью кровотока, находится путем быстрых заборов проб крови и их последующего анализа, либо фотоэлектрическими или термометрическими методами без заборов проб.

Предыдущая11121314151617181920212223242526Следующая

Дата добавления: 2016-01-20; просмотров: 766; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/6-56495.html

Методы измерения давления крови — Студопедия

Измерение давления в полостях сердца

В любой точке сосудистой системы давление крови зависит от:

а) атмосферного давления;

б) гидростатического давления pgh, обусловленного весом кровяного столба высотой h и плотностью р;

в) давления, обеспечиваемого насосной функцией сердца.

В соответствии с анатомо-физиологическим строением сердечно-сосудистой системы различают: внутрисердечное, артериальное, венозное и капиллярное кровяные давления.

Артериальное давление – систолическое (в период изгнания крови из желудочкой) у взрослых людей в номе составляет 100 – 140 мм. рт. ст.; диастолическое (в конце диастолы) – 70 – 80 мм. рт. ст.

Показатели кровяного давления у дете с возрастом повышаются и зависят от многих эндогенных и экзогенных факторов. У новорожденных систолическое давление 70 мм. рт. ст., затем повышается до 80 – 90 мм. рт. ст.

Таблица 1.

Артериальное давление у детей.

ДетиСистолическое давление, мм. рт.ст.Диастолическое давление, мм. рт.ст.
от 4 до 7 лет80 – 11040 – 70
от 8 до 13 лет90 – 12050 – 80
от 14 до 17 лет90 – 13060 – 80

Разность давлений на внутреннюю (Рв) и наружную (Рн) стенки сосуда называют трансмуральным давлением (Рт): Рт = Рв – Рн.

Можно считать, что давление на наружную стенку сосуда равно атмосферному. Трансмуральное давление является важнейшей характеристикой состояния системы кровообращения, определяя нагрузку сердца, состояние периферического сосудистого русла и ряд других физиологических показателей.

Трансмуральное давление, однако, не обеспечивает движение крови от одной точки сосудистой системы к другой. Например, среднее по времени трансмуральное давление в крупной артерии руки составляет около 100 мм.рт.ст. (1,33 . 104 Па).

В то же время, движение крови из восходящей дуги аорты в эту артерию обеспечивается разностью трансмуральных давлений между указанными сосудами, которое составляет 2-3 мм.рт.ст. (0,03 . 104 Па).

При сокращении сердца давление крови в аорте испытывает колебания. Измеряют среднее за период давление крови. Оно может быть оценено по формуле:

(4)

Закон Пуазейля объясняет падение давления крови вдоль сосуда. Так как гидравлическое сопротивление крови растет с уменьшением радиуса сосуда, то, согласно формуле 12 (лекция 9), давление крови падает. В крупных сосудах давление падает всего на 15%, а в мелких – на 85%. Поэтому большая часть энергии сердца затрачивается на течение крови по мелким сосудам.

В настоящее время известны три способа измерения артериального давления: инвазивный (прямой), аускультативный и осциллометрический.

Инвазивный (прямой) метод измерения артериального давления.

Иглу или канюлю, соединенную трубкой с манометром, вводят непосредственно в артерию. Основная область применения – кардиохирургия. Прямая манометрия – практически единственный метод измерения давления в полостях сердца и центральных сосудах.

Венозное давление надежно измеряется так же прямым методом. В клинико-физиологических экспериментах применяется суточное инвазивное мониторирование артериального давления.

Игла, введенная в артерию, промывается гепаринизированным солевым раствором с помощью микроинфузатора, а сигнал датчика давления непрерывно записывается на магнитную ленту.

Недостатком прямых измерений давления крови является необходимость введения измерительных устройств в полость сосуда. Без нарушения целостности сосудов и тканей осуществляется измерение давления крови с помощью инвазивных (непрямых) методов. Большинство непрямых методов являются компрессионными – они основаны на уравновешивании давления внутри сосуда внешним давлением на его стенку.

Простейшим из таких методов является пальпаторный способ определения систолического артериального давления, предложенный Рива-Роччи. При использовании данного метода на среднюю часть плеча накладывают компрессионную манжету. Давление воздуха в манжете измеряется с помощью манометра.

Накачиванием воздуха в манжету давление в ней быстро поднимается до значения, превышающего систолическое. Затем воздух из манжеты медленно выпускают, одновременно наблюдая за появлением пульса в лучевой артерии.

Зафиксировав пальпаторно появление пульса, отмечают в этот момент давление в манжете, которое и соответствует систолическому давлению.

Из неинвазивных (непрямых) методов наибольшее распространение получили аускультативный и осциллометрический методы измерения давления.

Аускультативный метод Н. С. Короткова.

Аукультативный метод имеет наибольшее распространение и основан на установлении систолического и диастолического давления по возникновению и исчезновению в артерии особых звуковых явлений, характеризующих турбулентность потока крови, – тонов Короткова. На область плеча накладывается компрессионная манжета.

В манжету накачивается воздух до установления давления больше систолического. Давление, согласно закону Паскаля, передается на мягкие ткани и сосуды в глубине их. Артерия пережимается, кровь не течет и тоны Короткова не обнаруживаются. При выходе воздуха из манжеты давление, действующее на артерию, уменьшается.

При равенстве наружного давления систолическому кровь начинает прорываться сквозь сдавленный манжетой участок артерии, и возникают характерные звуки, сопровождающие турбулентное течение крови и прослушиваемые с помощью фонендоскопа. В момент возникновения тонов по манометру определяют систолическое давление.

Момент исчезновения шумов соответствует равенству измеряемого наружного давления диастолическому. Необходимо отметить, что систолическое и диастолическое давления только оцениваются, так как точно определяются по этому методу полное и статическое давления в кровеносном сосуде.

Приборы, используемые для измерения давления крови, называют сфигмоманометрами.

Аускультативный метод реализуется в различных вариантах. В частности, в измерителях давления тоны Короткова могут восприниматься микрофоном, преобразующим звуковые воздействия в электрические сигналы, поступающие на регистрирующее устройство.

На цифровом табло регистратора указываются значения систолического и диастолического давления.

В некоторых приборах изменения в движении стенок артерии при систолическом и диастолическом давлении (сопровождающиеся возникновением и исчезновением тонов Короткова) определяются с помощью ультразвуковой локации и эффекта Доплера.

Осциллометрический метод.

Метод основан на том, что при прохождении крови во время систолы через сдавленный участок артерии в манжете возникают микропульсации давления воздуха, анализируя которые можно получить значения систолического, диастолического и среднего давления. Систолическому давлению обычно соответствует давление в манжете, при котором происходит наиболее резкое увеличение амплитуды осцилляций, среднему – максимальный уровень осцилляций и диастолическому – резкое ослабление осцилляций.

Источник: https://studopedia.ru/2_87411_metodi-izmereniya-davleniya-krovi.html

Давление в полостях сердца

Измерение давления в полостях сердца

Так как движение крови в полостях сердца, как и во всей кровеносной  системе, обусловлено разностью давлений по всему пути движения крови, то необходимо рассмотреть, как меняется давление в предсердиях и желудочках при систоле и диастоле.

Впервые измерения давления в полостях сердца, а также в аорте и легочной артерии в экспериментах на крупных животных (лошадях и собаках) были проведены в 1861 г. Шово и Мареем.

Для этой цели они вводили через вскрытую на шее яремную вену тонкую металлическую трубку — зонд, проталкивая ее до полой вены, а затем до правого предсердия, правого желудочка или легочной артерии. Зонд соединяли с прибором для регистрации давления.

Если было необходимо определять колебания давления в левой половине сердца, то зонд вводили в левый желудочек, через левую сонную артерию и дугу аорты.

В последние годы измерения внутрисердечпого давления производят и у человека при некоторых заболеваниях сердца, когда эти измерения необходимы для диагностики, т. е. выяснения характера заболевания сердца. Для этой цели в центральный конец вскрытой плечевой вены вводят тонкий эластичный полый зонд — катетер и проталкивают его по направлению к полой вене и далее до правого предсердия, желудочка или легочной артерии (рис. 24). В аорту или левый желудочек зонд вводят через плечевую артерию. Измерение давления в полостях сердца и крупных сосудах производят также путем их пункции, т. е. прокалывают грудную клетку и вводят полую иглу в одно из предсердий или в один из желудочков, в аорту или в легочную артерию. Введенный в полость сердца или в крупный сосуд заполненный противосвертывающим раствором зогд (или иглу) соединяют с чувствительным и безынерционным электрическим манометром и регистрируют таким путем колебания давления.Рис. 24. Путь по которому проходит катетер из локтевой вены в правое сердце и легочную артерию (А), и рентгенограмма грудной клетки человека с введенным в легочную артерию катетером (Б) (по Е. Н. Мешалкину)

Колебания давления в предсердиях относительно невелики. На высоте, систолы предсердий давление в них равно 5-8 мм рт. ст.

Во время диастолы предсердий давление в них падает до 0, затем, начиная с середины систолы желудочков, оно медленно нарастает вследствие наполнения полости предсердия кровью, притекающей из вен (рис. 25).

Когда систола желудочков закапчивается и атриовентрикулярные клапаны открываются, давление в предсердиях вновь падает, потому что кровь из них свободно переходит в желудочки. За 0.

1 секунды до начала систолы желудочков начинается систола предсердий, в результате которой происходит некоторое добавочное исполнение желудочков кровью. Это добавочное наполнение не имеет, однако, важного значения, так как большая часть наполняющей желудочек крови уже поступила в него в первый период диастолы желудочков.

Уровень давления в предсердиях во время их диастолы зависит от фазы дыхания. Во время вдоха давление в предсердиях в начале их диастолы становится отрицательным, т. е. ниже атмосферного.

Причина этого понижения давления заключается в том, что на высоте вдоха отрицательное давление в грудной полости возрастает. Вследствие понижения давления в предсердиях на высоте вдоха увеличивается приток к ним крови из вен.

Во время выдоха отрицательное давление в грудной полости уменьшается и давление в предсердиях в начале их диастолы становится близким к 0.

Систола желудочков начинается после окончания систолы предсердий. Волна сокращения, постепенно распространяясь по миокарду, не сразу охватывает всю массу мускулатуры желудочков; часть мышечных волокон сокращается, вследствие чего другая их часть, еще не сократившаяся, не изменяется. Поэтому форма желудочков изменяется, однако давление не меняется. Этот период систолы желудочков, когда происходит распространение волны возбуждения и сокращения по миокарду, называют фазой асинхронного сокращения, или периодом изменения формы желудочков. Он продолжается 0,05 секунды. После того как все мышечные волокна желудочков охвачены сокращением, давление крови в полости желудочков начинает увеличиваться, что вызывает закрытие атриовентрикулярных клапанов.Полулунные клапаны в это время также закрыты, потому что давление в желудочках пока еще ниже, чем в аорте и легочной артерии. Поэтому в течение короткого отрезка времени — 0,03 секунды — мускулатура желудочков напрягается, но их объем меняется (так как кровь в желудочках, подобно всякой жидкости, практически несжимаема) до тех пор, пока давление в желудочке не превысит давления в аорте и легочной артерии и пока под влиянием напора крови не откроются полулунные клапаны.  Период сокращения при закрытых клапанах называют фазой изометрического сокращения (изометрическим называют такое сокращение мышцы, при котором мышечные волокна развивают напряжение, но не укорачиваются). Фазы асинхронного и изометрического сокращений вместе называют периодом напряжения желудочков (2 и 3 на рис. 25).Рис. 25. Схематизированные кривые изменения давлении в правых (А) и левых (Б) отделах сердца, тонов сердца (В), объема желудочков (Г) и электрокардиограмма (Д). 
Когда в результате изометрического сокращения давление в желудочках становится выше, чем давление в аорте и легочпой артерии, клапаны аорты и легочной артерии открываются, наступает фаза изгнания крови из желудочков и кровь поступает из желудочков в аорту и легочную артерию (4 на рис.25).У человека изгнание крови, иначе говоря, систолический выброс в аорту, т. е. в большой круг кровообращения, начинается, когда давление в левом желудочке достигает 65-75 мм рт. ст., а изгнание крови в легочную артерию, т. е. в малый круг кровообращения, начинается, когда давление крови в правом желудочке достигает 5-12 мм рт. ст.Рис. 26. Нормальные величины давления в правом предсердии, правом желудочке, легочной артерии, левом предсердии, левом желудочке, аорте (по Луизада и Лиу). 

В первый момент фазы изгнания давление крови в желудочках нарастает так же круто, как и до открытия полулунных клапанов (фаза быстрого изгнания – 0,10-0,12 секунды).

По мере того как количество крови в желудочках убывает и приток крови в аорту и легочную артерию становится меньше, чем отток от них, нарастание давления прекращается и давление к концу систолы начинает падать (фаза замедленного изгнания крови – 0,10-0,15 секунды).

Максимальный уровень давления на высоте систолы в нормальных физиологических условиях достигает в левом желудочке 115-125 мм рт. ст., а в правом желудочке 25-30 мм. Большая высота давления крови, создаваемого левым желудочком, чем правым, обусловлена большей мощностью его мускулатуры.

Это связано с тем, что левому желудочку приходится преодолевать большее сопротивление току крови в сосудах большого круга кровообращения.

Колебания давления в аорте и легочной артерии в период изгнания крови из желудочков следуют за изменениями давления в соответствующем желудочке: в аорте на высоте систолы давление равно 110-125 мм , а в легочной артерии – 25-30 мм (рис. 26).

Вслед за фазой изгнания наступает диастола желудочков. Они начинают расслабляться, поэтому давление в аорте становится выше, чем в желудочке, и полулунные клапаны захлопываются.

Время от начала расслабления желудочков до закрытия полулунных клапанов названо протодиастолическим периодом, который длится 0,04 секунды (5 на рис. 25).

Затем в течение некоторого времени (около 0,08 секунды) желудочки продолжают расслабляться при закрытых и атриовентрикулярных и полулунных клапанах, пока давление в желудочках не упадет ниже,  чем в предсердиях, уже наполненных к этому времени кровью.

Этот период систолы обозначают как фазу изометрического расслабления, или фазу спадения напряжения (6 на рис. 25). Ее длительность в среднем 0,08 секунды. Вслед за этим створчатые клапаны открываются, и кровь из предсердии начинает наполнить  желудочки.

Поступление крови в желудочки идет вначале быстро, так как давление в них после их расслабления падает до 0 (фаза быстрого наполнения, длящаяся 0,08 секунды, – 7 на рис. 25).

По мере наполнения желудочков давление в них немного увеличивается и наполнение замедляется (фаза замедленного наполнения, продолжающаяся 0,16 секунды, – 8 на рис. 25).

В конце диастолы желудочков происходит систола предсердий длительностью 0,1 секунды (фаза наполнения желудочков, обусловленная систолой предсердий, или пресистола, — 1 на рис. 25).

Во время диастолы желудочков давление крови в аорте и легочной артерии постепенно снижается по мере оттока из них крови и к концу диастолы оно равно в аорте 65-75 мм, а в легочной артерии – 5— 10 мм рт. ст.

Так как это конечно-диастолическое давление выше давления в желудочках, то полулунные клапаны остаются закрытыми до тех пор, пока давление в желудочках при их сокращении не превысит уровень давления в крупных артериальных стволах.

Последовательность отдельных фаз цикла деятельности желудочков может быть представлена следующим образом:

Приведенные показатели продолжительности систолы и диастолы и их фаз представляют собой средние данные, наблюдаемые при частоте сердечных сокращений 75 в минуту. При более частом или более медленном ритме работы сердца длительность фаз изменяется.

При учащении ритма значительно укорачивается диастола, главным образом за счет уменьшения длительности фазы медленного наполнения. Относительно меньше укорачивается систола за счет уменьшения времени медленного изгнания крови из желудочков.

При замедлении работы сердца происходят противоположные изменения длительности фаз изгнания и наполнения желудочков.

Источник: https://www.amedgrup.ru/davlen.html

Понятие о давлении, сопротивлении и ритме сердца

Измерение давления в полостях сердца

Возьмите в ладонь резиновую грушу и заполните ее водой. Теперь сожмите ее изо всех сил, стараясь не оставить внутри ни одной капли. Вода выльется из выходного отверстия, и чем больше оно будет, тем меньше надо прилагать усилий. И – наоборот. Чем уже отверстие — тем труднее выжать из полости груши всё без остатка.

Теперь сделаем тоже самое, но попробуем сложить вместе две резиновые груши. Заполним их одинаковым объемом воды, но у одной сделаем большое отверстие для выхода, а у другой — маленькое. Из первой при сжатии вода выльется легко, от небольшого сдавливания, а чтобы опорожнить вторую, потребуется гораздо больше силы. Так происходит и с сердцем.

За одним важным исключением: его некому сдавливать, и всю работу выполняет его собственный мышечный аппарат.

Сжимаясь, или «сокращаясь», в фазу систолы, оно выталкивает из своих желудочков всю поступившую из предсердий кровь, а в фазу диастолы – отдыхает, набираясь сил для очередного сокращения, которое последует через доли секунды.

Та сила, с которой мышца сердца сжимает этот объем крови в полости желудочков, создает давление, в результате которого кровь выбрасывается в магистральные сосуды.

Но скорость, с которой она покинет желудочки, будет зависеть не только от силы сдавливания, но и от того, насколько ей трудно или легко уйти из желудочка в просвет сосуда.

То есть, если вернуться к нашим двум резиновым грушам: через большее отверстие она пойдет, или через меньшее. Иными словами, важно еще и то, какое сопротивление будет оказано этому выбросу со стороны, так сказать, его принимающей, т.е. сосудистого русла.

Тут мы с вами пришли к пониманию нескольких главных законов, управляющих и движением крови в сердце, и ее передвижением в организме, т.е. к тому, благодаря каким силам и по каким течениям двигалась наша байдарка.

Итак, несколько новых понятий: объём крови, давление и сопротивление кровотоку.

Самый простой и давно известный важнейший параметр, который можно измерить и выразить в цифрах, это давление. Но что такое давление? Поверьте, если вы хотите понять, что с вашим ребенком, это надо знать отчетливо. Только тогда вы сможете понять, о чем вам будут говорить врачи. На самом деле это очень просто.

Давление крови – это цифра, говорящая о двух важнейших сторонах движения крови: о ее объеме и сопротивлении ее потоку в каждый отдельный отрезок времени. Оно может быть измерено в любом сосуде, в любой сердечной камере. И оно дает достаточно точное представление о том, что там, внутри камеры, происходит каждую фазу сердечного цикла.

Пока мы говорим только о работе здорового сердца. И понятно, что чем больше объем крови в желудочке, тем больше нужно усилие, чтобы его выбросить, т.е. подвергнуть его большему давлению. И — чем больше сопротивление выбросу, тем больше нужно усилие (давление), чтобы опорожнить желудочек, готовя его к новой порции крови.

Сосудистое русло оказывает сопротивление кровотоку все целиком, от начала, т.е. от восходящей аорты, до самых мелких артерий и капилляров — в большом круге, и легочных артерий, артериол и капилляров — в малом круге. Следовательно, мощный левый артериальный желудочек работает против сопротивления гигантского по объему сосудистого русла всего тела.

Правый желудочек, венозный, более тонкостенный, работает против такого же гигантского по объему, но значительно более эластичного, короткого и «мягкого» сосудистого русла легких. Соответственно и цифры давления в полостях желудочков разные, и в сосудах, отходящих от них.

В таблице №1 эти цифры отражены, и можно видеть, что давление в нормальных условиях в правом желудочке и легочной артерии составляет примерно одну треть от давления в левом желудочке и сосудах большого круга. Вспомните при этом, что количество, т.е. объем крови, выбрасываемой при каждом сокращении из каждого желудочка – в норме одинаково.

До сих пор мы говорили только о сжатии объема крови под давлением. Это так называемое систолическое давление, или — максимальное давление, создающееся в системе в момент сокращения.

Но есть и вторая цифра — это давление крови в сосудах в период диастолы, или расслабленного и заполняющегося сердца.

В этой фазе клапаны аорты и легочной артерии закрыты и при их целостности кровь в сосудах оказывается под давлением замкнутой системы сосудистого русла тела (в большом круге) и легких (в малом круге).

Поэтому цифр давления две – так называемое «верхнее» (систолическое) и «нижнее» (диастолическое) давление.

Средние цифры нормального давления в полостях сердца и крупных сосудов (мм. рт.ст.)

НоворожденныеДети (1 мес. – подростки)
Правое предсердие0 – 32 – 5
Правый желудочек35 – 6515 -30 / 2 – 5
Легочная артерия35 – 65 / 20 – 4015 – 30 / 5 – 10
Левое предсердие1 – 45 – 15
Левый желудочек70 – 9080 – 130 / 5 – 10
Артерия80 – 100 / 50- 6090 – 130 / 60 – 90

Обратите внимание, что у новорожденных давление в правом желудочке и легочной артерии значительно выше, чем у детей даже первого месяца жизни. Это объясняется тем, что сосуды и все 700 миллионов альвеол легких открываются постепенно и полностью готовы к принятию всего объема крови из правого желудочка только через несколько недель после рождения.

Теперьпопробуем ответить на вопрос — что же двигает сердце, чем обусловлены его ритмические сокращения. Поверьте, это тоже очень важно.

Ритмичный, последовательный, регулярный цикл сокращений и расслаблений сердца управляется электрическими импульсами. Эти импульсы возникают в особых клетках мышцы сердца, так называемых клетках проводящей системы. Очаги большого скопления этих клеток называют «узлами», а их разветвления, идущие вдоль мышечных волокон — «проводящими путями».

Узлов проводящей системы два: синусовый и атрио-вентрикулярный, а путей — несколько. Особенность самих клеток, проводящих электрические импульсы, заключается в том, что они способны возбуждаться и передавать это возбуждение значительно быстрее, чем соседние клетки рабочего, сокращающегося миокарда, или сердечной мышцы.

Поэтому они — проводники, указывающие путь другим, быстрее других понимающие, куда идти. В нормальном сердце вначале возбуждается верхний, синусовый узел.

Импульс передается по проводящим путям стенок предсердий к нижнему, атрио-вентрикулярному узлу, а затем, по более тонким путям поступает к желудочкам, вызывая в ответ их сокращение – фаза систолы. Затем следует период паузы — диастола – и миокард готовится к принятию нового импульса. Частота таких импульсов – это частота сердцебиения и пульса.

У новорожденных – 110-120 ударов в минуту, у взрослых гораздо реже – 65-75 ударов в минуту. Эти электрические импульсы легко регистрируются достаточно простыми приборами. Запись приборов называют электрокардиограммой.

Мы далеки от мысли научить вас ее читать: это дело профессионалов. Мы только хотим объяснить, что это такое, и для чего она делается.

Электрокардиограмма дает возможность не только выявить нарушения нормального проведения импульса, но и определить, какие отделы сердца ненормально увеличены, какие постоянно работают с повышенной нагрузкой, каким образом они с ней справляются.

При подозрении на порок сердца вашему ребенку много раз будут делать это исследование. Оно безболезненно и очень информативно.

Нам с вами остается только поражаться невероятному совершенству сердечно-сосудистой системы, которая при всей своей сложности, удивительно проста, логична и стройна. Однако, она должна быть абсолютно точно и правильно создана. Достаточно даже не слишком больших изменений в ее строении, чтобы вызвать нарушение этой постоянной, спокойной и синхронной работы.

Цитируется по книге Г. Э. Фальковский, С. М. Крупянко. Сердце ребенка. Книга для родителей о врожденных пороках сердца

Как попасть на лечение в Научный центр им. А.Н. Бакулева?

Источник: https://bakulev.ru/patients/articles/osnovnye-terminy-i-ponyatiya/759951/

Давление крови, его виды и методы измерения. Анализ факторов, определяющих кровяное давление

Измерение давления в полостях сердца

Кровяное давление — давление, которое кровь оказывает на стенки кровеносных сосудов, или, по-другому говоря, превышение давления жидкости в кровеносной системе над атмосферным, один из важных признаков жизни.

Наиболее часто под этим понятием подразумевают артериальное давление. Кроме него, выделяют следующие виды кровяного давления: внутрисердечное, капиллярное, венозное.

При каждом ударе сердца кровяное давление колеблется между наименьшим (диастолическим) и наибольшим (систолическим).

На величину кровяного давления влияют несколько факторов:

– Количество крови, поступающее в единицу времени в сосудистую систему

– Интенсивность оттока крови на периферию

– Ёмкость артериального отрезка сосудистого русла

– Упругое сопротивление стенок сосудистого русла

– Скорость поступления крови в период сердечной систолы

– Вязкость крови

– Соотношение времени систолы и диастолы

– Частота сердечных сокращений.

Таким образом, величина кровяного давления, в основном, определяется работой сердца и тонусом сосудов (главным образом, артериальных).

В аорте, куда кровь с силой выбрасывается из сердца, создается самое высокое давление (от 115 до 140 мм рт. ст.). По мере удаления от сердца давление падает, так как энергия, создающая давление, расходуется на преодоление сопротивления току крови.

Чем выше сосудистое сопротивление, тем большая сила затрачивается на продвижение крови и тем больше степень падения давления на протяжении данного сосуда. Так, в крупных и средних артериях давление падает всего на 10%, достигая 90 мм рт.ст.; в артериолах оно составляет 55 мм, а в капиллярах – падает уже на 85%, достигая 25 мм.

В венозном отделе сосудистой системы давление самое низкое. В венулах оно равно 12, в венах – 5 и в полой вене – 3 мм рт.ст.

В малом круге кровообращения общее сопротивление току крови в 5-6 раз меньше, чем в большом круге. Поэтому давление в легочном стволе в 5-6 раз ниже, чем в аорте и составляет 20-30 мм рт.ст. Однако и в малом круге кровообращения наибольшее сопротивление току крови оказывают мельчайшие артерии перед своим разветвлением на капилляры.

В настоящее время известны три способа измерения артериального давления: инвазивный (прямой), аускультативный и осциллометрический.

Инвазивный (прямой) метод измерения артериального давления. Иглу или канюлю, соединенную трубкой с манометром, вводят непосредственно в артерию. Основная область применения – кардиохирургия. Прямая манометрия – практически единственный метод измерения давления в полостях сердца и центральных сосудах.

Венозное давление надежно измеряется так же прямым методом. В клинико-физиологических экспериментах применяется суточное инвазивное мониторирование артериального давления.

Игла, введенная в артерию, промывается гепаринизированным солевым раствором с помощью микроинфузатора, а сигнал датчика давления непрерывно записывается на магнитную ленту.

Недостатком прямых измерений давления крови является необходимость введения измерительных устройств в полость сосуда.

Без нарушения целостности сосудов и тканей осуществляется измерение давления крови с помощью инвазивных (непрямых) методов. Большинство непрямых методов являются компрессионными – они основаны на уравновешивании давления внутри сосуда внешним давлением на его стенку.

Простейшим из таких методов является пальпаторный способ определения систолического артериального давления, предложенный Рива-Роччи. При использовании данного метода на среднюю часть плеча накладывают компрессионную манжету. Давление воздуха в манжете измеряется с помощью манометра.

Накачиванием воздуха в манжету давление в ней быстро поднимается до значения, превышающего систолическое. Затем воздух из манжеты медленно выпускают, одновременно наблюдая за появлением пульса в лучевой артерии.

Зафиксировав пальпаторно появление пульса, отмечают в этот момент давление в манжете, которое и соответствует систолическому давлению.

Из неинвазивных (непрямых) методов наибольшее распространение получили аускультативный и осциллометрический методы измерения давления.

Аускультативный метод Н. С. Короткова. Аукультативный метод имеет наибольшее распространение и основан на установлении систолического и диастолического давления по возникновению и исчезновению в артерии особых звуковых явлений, характеризующих турбулентность потока крови, – тонов Короткова.

На область плеча накладывается компрессионная манжета. В манжету накачивается воздух до установления давления больше систолического. Давление, согласно закону Паскаля, передается на мягкие ткани и сосуды в глубине их. Артерия пережимается, кровь не течет и тоны Короткова не обнаруживаются.

При выходе воздуха из манжеты давление, действующее на артерию, уменьшается. При равенстве наружного давления систолическому кровь начинает прорываться сквозь сдавленный манжетой участок артерии, и возникают характерные звуки, сопровождающие турбулентное течение крови и прослушиваемые с помощью фонендоскопа.

В момент возникновения тонов по манометру определяют систолическое давление. Момент исчезновения шумов соответствует равенству измеряемого наружного давления диастолическому.

Необходимо отметить, что систолическое и диастолическое давления только оцениваются, так как точно определяются по этому методу полное и статическое давления в кровеносном сосуде. Приборы, используемые для измерения давления крови, называют сфигмоманометрами.

Аускультативный метод реализуется в различных вариантах. В частности, в измерителях давления тоны Короткова могут восприниматься микрофоном, преобразующим звуковые воздействия в электрические сигналы, поступающие на регистрирующее устройство.

На цифровом табло регистратора указываются значения систолического и диастолического давления.

В некоторых приборах изменения в движении стенок артерии при систолическом и диастолическом давлении (сопровождающиеся возникновением и исчезновением тонов Короткова) определяются с помощью ультразвуковой локации и эффекта Доплера.

Осциллометрический метод.

Метод основан на том, что при прохождении крови во время систолы через сдавленный участок артерии в манжете возникают микропульсации давления воздуха, анализируя которые можно получить значения систолического, диастолического и среднего давления.

Систолическому давлению обычно соответствует давление в манжете, при котором происходит наиболее резкое увеличение амплитуды осцилляций, среднему – максимальный уровень осцилляций и диастолическому – резкое ослабление осцилляций.

Нервная и гуморальная регуляция постоянства температуры тела человека. Эффекторы теплопродукции и теплообмена. Характеристика рефлекторных дуг безусловных терморегуляционных рефлексов. Основные гуморальные регуляторы тепловых процессов в организме. Гипоталямический термостат.

Механизмы регуляции теплообмена:
центральные и эффекторные.

Центральные механизмы выполняются, главным образом, центром терморегуляции, локализующимся в медиальной преоптической области переднего гипоталамуса и заднем гипаталамусе, где имеются:

– термочувствительные нейроны, “задающие” уровень поддерживаемой температуры тела;


– эффекторные нейроны, управляющие процессами теплопродукции и теплоотдачи (центр теплопродукции и центр теплоотдачи).


Гипотермия возникает тогда, когда интенсивность теплопродукции превышает теплоотдачу/способность организма отдавать тепло в окружающую среду

В процессе эволюции в живых организмах выработалась особая ответная реакция на попадание во внутреннюю среду чужеродных веществ – лихорадка. Это состояние организма, при котором центр терморегуляции стимулирует повышение температуры тела. Это достигается перестраиванием механизма “установки” температуры регуляции на более высокую. Включаются механизмы:

– активирующие теплопродукцию (повышение терморегуляционного тонуса мышц, мышечная дрожь)

– снижающие интенсивность теплоотдачи (сужение сосудов поверхности тела, принятие позы, уменьшающей площадь соприкосновения поверхности тела с внешней средой).

Переход “установочной точки” происходит в результате действия на соответствующую группу нейронов преоптической области гипоталамуса эндогенных пирогенов – веществ. вызывающих подъем температуры тела ( альфа- и бетта- интерклейкин-1, альфа-интерферон, интерклейкин-6).


Система терморегуляции использует для осуществления своих функций компоненты других регулирующих систем.

Такое сопряжение теплообмена и других гомеостатических функций прослеживается, прежде всего, на уровне гипоталамуса. Его термочувствительные нейроны изменяют свою биоэлектрическую активность под действием эндопирогенов, половых гормонов, некоторых нейромедиаторов.
Реакции сопряжения на эффекторном уровне.

Центр терморегуляции находится в гипоталамусе. Передний отдел гипоталамуса воспринимает информацию от периферических и центральных терморецепторов. Центр теплопродукции расположен в ядрах заднего отдела гипоталамуса.

Отсюда через симпатическую нервную систему идут импульсы повышают метаболизм, сужают сосуды кожи, активизируют терморегуляцию скелетных мышц. В этих реакциях участвуют и гормоны – адреналин, норадреналин, тироксин и др.

Это проявляется в эффектах теплоконсервации и наблюдается при поступлении импульсов от холодовых рецепторов.

Центр теплоотдачи содержится в ядрах переднего отдела гипоталамуса. Отсюда идут импульсы, которые расширяют сосуды кожи, повышают потоотделение, снижают теплопродукции. При разрушении центра терморегуляции в гипоталамусе гомойотермных животных превращается в пойкилотермные.

Определенную роль в регуляции температуры тела играют и другие отделы ЦНС (ретикулярная формация, лимбическая система, кора головного мозга).

Включение различных механизмов теплообмена происходит постоянно, в зависимости от конкретных условий. Да, такие механизмы, как потоотделение или мышечная дрожь, включаются тогда, когда другие пути поддержания постоянной температуры ядра оказываются недостаточно эффективными. Потоотделение и мышечная дрожь сопровождаются ощущением температурного дискомфорта.

Центры гипоталамуса будто настроены на «заданное значение» температуры тела.

Этот показатель определяется следующей суммарной температурой тела, которая возникает тогда, когда механизмы теплоотдачи и теплообразования находятся на уровне минимальной активности.

В этом не участвуют дополнительные механизмы, обеспечивающие получение или выделение избытка тепла. Тепловые и холодовые рецепторы находятся в наименее возбужденном состоянии. Это условие температурного комфорта.

Для создания ощущения температурного комфорта в легко одетом взрослом человеке, который спокойно сидит, нужно, чтобы температура стен и воздуха была на уровне 25-26 ° С, относительная влажность – 50%. Любое изменение этих условий приведет к раздражению соответствующих рецепторов и включение механизмов терморегуляции.

Этапность включения механизмов регуляции заключается в том, что сначала включаются энергосберегающие механизмы, например, поведенческие. А такие механизмы, как дрожь, локомоции или потоотделение, присоединяются прежде. Чем дальше условия от комфортных, тем больше ощущение дискомфорта.

Состояние терморегулирующий зон гипоталамуса может изменяться под влиянием ряда факторов крови.

Температурная адаптация:

Длительная адаптация, акклиматизация к постепенно меняющейся температурного режима способствуют существенному расширению ареала обитания человека.

Важнейшее значение при этом имеет изменение активности обменных процессов. Так, у жителей высоких широт повышенный основной обмен, а у жителей пустынь, наоборот, снижен.

Это обусловлено изменением уровня гормонов, прежде тироксина – одного из основных стимуляторов термогенеза.

Как отмечалось, при повышении внешней температуры для выделения тепла используется механизм потоотделения. При этом с потом может теряться большое количество NaCl.

Но в процессе адаптации постепенно в течение нескольких недель происходят два взаимосвязанных процесса: интенсифицируется выделение пота (до 1,5-2,0 л / ч) при одновременном снижении вывода NaCL Если неаклиматизованои человека с потом выводится 15-ЗО г / л NaCl , то в акклиматизированы только 3-5 г / л. Механизм задержки натрия обусловлен активизацией образования альдостерона.

Кроме этого, у людей, которые живут в названных зонах, несколько изменены и нервно-рефлекторные механизмы терморегуляции. Температура ядра у людей, которые живут в широтах с жарким климатом, на 0,5-1 °С выше, а у жителей регионов с холодным климатом снижена.

Они также границы начала реагирования периферических рецепторов и отключение механизмов терморегуляции.

У жителей тропиков сосуды и потовые железы начинают реагировать при высокой температуре тела, а у жителей высокогорных районов – при низкой, чем у тех, кто живет в регионах с умеренным климатом (на 0,5-1 ° С).

В процессе адаптации к многовековому пребыванию в условиях соответствующих температур, помимо чисто функциональных особенностей, выработались и морфологические различия. Так, у жителей тропиков в коже сравнительно больше потовых желез.



Источник: https://infopedia.su/12x40b2.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.