Объем воздуха от давления

Сжатый воздух – АПС Инжиниринг

Объем воздуха от давления

Сжатый воздух — это воздух, находящийся  под  давлением, превышающим атмосферное давление.

Сжатый воздух является уникальным энергоносителем наряду с электроэнергией, природным газом и водой. В производственных условиях сжатый воздух, в основном, используется для привода в действие устройств и механизмов с пневматическим приводом (пневмопривод).

В повседневной, обыденной жизни мы практически не замечаем окружающий нас Воздух. Тем не менее, на протяжении всей истории человечества, люди использовали уникальные свойства воздуха. Изобретение паруса и кузнечного горна, ветряной мельницы и воздушного шара стали первыми  шагами использования воздуха в  качестве энергоносителя. 

С изобретением компрессора настала эпоха индустриального использования сжатого воздуха. И вопрос: «что же представляет собой Воздух, и какими свойствами он обладает?» – стал далеко не праздным.

Приступая  к проектированию новой пневмосистемы или  модернизации уже существующей, нелишне будет вспомнить и о некоторых свойствах воздуха, терминах и единицах измерения.

 Воздух это смесь газов, главным образом состоящая из азота и кислорода.

Состав воздуха
Элемент*ОбозначениеПо объёму, %По массе, %
АзотN278,08475,5
КислородO220,947623,15
АргонAr0,9341,292
Углекислый газCO20,03140,046
НеонNe0,0018180,0014
МетанCH40,00020,000084
ГелийHe0,0005240,000073
КриптонKr0,0001140,003
ВодородH20,000050,00008
КсенонXe0,00000870,00004
Вода**H2O__       

Средняя относительная молярная масса -28,98 . 10-3 кг/моль

*Состав воздуха может меняться. Как правило, в промышленных зонах воздух содержит посторонние примеси.

** Воздух всегда содержит пары воды. Так, при температуре 0 °C 1 м³ воздуха может вмещать максимально около 5 граммов воды, а при температуре +10 °C — уже около 10 граммов.

давление воздуха 

Давление – это сила, действующая на единицу площади перпендикулярно к ней. Всякое тело, находящееся в неподвижном воздухе, испытывает со стороны последнего давление, одинаковое со всех сторон. Атмосферное давление объясняется тем, что воздух подобно всем другим веществам обладает весом и притягивается землей.

Атмосфернымдавлением (Ратм.), называется давление вызываемое весом вышележащих слоев воздуха и ударами его хаотически движущихся молекул.

За единицу давления принята техническая атмосфера (атм.) – давление, равное одному килограмму силы на один квадратный сантиметр (кгс/см2).

Давление обозначается буквой Р, на уровне моря –Р0.

Барометрическоедавление это давление, измеренное в миллиметрах ртутного столба (мм рт. ст). Обозначается буквой В, на уровне моря – В0.

Стандартным барометрическим давлением называется давление на уровне моря в мм рт. ст. Оно в зависимости от температуры и влажности колеблется от 700 до 800 мм рт. ст. и в среднем равно 760 мм. рт. ст. В физике под барометрическим давлением 1 атм. подразумевается давление воздуха, равное 1,0332 кгс/см2 или стандартному барометрическому давлению 760 мм рт. ст.

Избыточноедавление(Ризб.) или Давлениесжатоговоздуха – давление, превышающее атмосферное давление.

Давление сжатого воздуха можно считать также мерой запасённой в сплошной среде потенциальной энергии на единицу объёма.

В технических характеристиках пневматического оборудования, как правило, указывается именно избыточное давление (давление сжатого воздуха).

Рекомендованной единицей измерения давления, по  международной системе измерений (СИ), является Паскаль (Па). Внесистемная единица измерения давления – бар: 1 бар = 105Па = 0,1 Мпа

В технологии сжатия воздуха, рабочее давление является давлением сжатия и выражается в барах или  атмосферах (1 атм = 0,981 бар)

Ратм.= 1013 мбар = 1,01325 бар = 760 мм. ртутного столба = 101325 Па.

Абсолютное давление (Рабс.) – сумма атмосферного и избыточного давлений.

температура сжатого воздуха

Температура сжатого воздуха – величина, характеризующая степень теплового состояния тела (воздуха) или скорость хаотического движения молекул (чем выше температура, тем больше скорость их движения, и наоборот). Изменение объёма данной массы газа при постоянном давлении прямо пропорционально изменению температуры. (В процессе сжатия температура сжатого воздуха возрастает, с понижением давления температура сжатого воздуха понижается.)

По системе СИ, единица измерения температуры – градус Кельвина (°К). Соотношение градус Кельвина (°К ) с градусом Цельсия (°С):  (°K) = t(°C) + 273,15.

плотность воздуха 

Сжимаемость – свойство воздуха изменять свою плотность при изменении давления и температуры (для замкнутого объема).

Упругость– свойство воздуха возвращаться в исходное состояние после прекращения действия сил, вызвавших его деформацию (изменение объема при сжатии).

Плотностьвоздуха – количество воздуха содержащегося в 1 м3 объема.В физике существует понятие двух видов плотности – весовая (удельный вес) и массовая.

Весоваяплотность (удельный вес) воздуха – это вес воздуха в объеме 1 м3. Обозначается буквой g . При стандартных атмосферных условиях по ISO 2533 (барометрическое давление 760 мм рт.ст., t = +15о С) весовая плотность (удельный вес) 1м3 объема воздуха равна g = 1,225 кгс/м3.

Массовая плотность воздуха – это масса воздуха в объеме 1 м3. Обозначается греческой буквой ρ. Масса воздуха равна его весу, деленному на ускорение свободного падения. При стандартных атмосферных условиях массовая плотность воздуха равна: 0,1250 кг с2/м4.

В данном разделе мы напомнили лишь о некоторых свойствах воздуха.

Следует заметить, что при использовании сжатого воздуха в качестве энергоносителя необходимо учитывать реальные термодинамические процессы, возникающие при сжатии атмосферного воздуха. От этого во многом зависит эффективность работы Вашей пневмосистемы.

По всем вопросам, связанным с производством и использованием сжатого воздуха Вы можете обращаться к специалистам “АПС-Инжиниринг”. Мы всегда готовы поделиться своими знаниями и помочь Вам в решении “Воздушных” задач.

Источник: http://www.aps-e.ru/szhatiy-vozduch.html

Объемный и массовый расход газа

Объем воздуха от давления

Расход газа – это количество газа, прошедшего через поперечное сечение трубопровода за единицу времени. Вопрос в том, что принять за меру количества газа. В этом качестве традиционно выступает объем газа, а получаемый расход называют объемным.

Не случайно чаще всего расход газа выражают в объемных единицах (см3/мин, л/мин, м3/ч и т.д.). Другой мерой количества газа является его масса, а соответствующий расход называется массовым.

Он измеряется в массовых единицах (например, г/с или кг/ч), которые на практике встречаются значительно реже.

Как объем связан с массой, так и объемный расход связан с массовым через плотность вещества: , где  – массовый расход,  – объемный расход,  – плотность газа в условиях измерения (рабочие условия). Пользуясь этим соотношением, для массового расхода переходят к использованию объемных единиц (см3/мин, л/мин, м3/ч и т.д.

), но с указанием условий (температуру и давление газа), определяющих плотность газа. В России применяют «стандартные условия» (ст.): давление 101,325 кПа (абс) и температура 20°С. Помимо «стандартных», в Европе используют «нормальные условия» (н.): давление 101,325 кПа (абс) и температура 0°С.

В результате, получаются единицы массового расхода н.л/мин, ст.м3/ч и т.д.

Итак, расход газа бывает объемным и массовым.

Какой из них следует измерять в конкретном применении? Как наглядно увидеть разницу между ними? Давайте рассмотрим простой эксперимент, где три расходомера последовательно установлены в магистраль.

Весь газ, поступающий на вход схемы, проходит через каждый из трех приборов и выбрасывается в атмосферу. Утечек или накопления газа в промежуточных точках системы не происходит.

Источником сжатого воздуха является компрессора, от которого под давлением 0,5…0,7 бар (изб) газ подаётся на вход поплавкового ротаметра. Выход ротаметра подключен ко входу теплового регулятора расхода газа серии EL-FLOW, производства компании Bronkhorst. В нашей схеме именно он регулирует количество газа, проходящее через систему.

Далее газ подаётся на вход второго поплавкового ротаметра, абсолютно идентичного первому. При задании расхода 2 н.л/мин с помощью расходомера EL-FLOW первый поплавковый ротаметр дает показания 1,65 л/мин, а второй – 2,1 л/мин. Все три расходомера дают различные показания, причем разница достигает 30%.

Хотя через каждый прибор проходит одно и то же количество газа.

Попробуем разобраться. Какая мера количества газа в данной ситуации остается постоянной: объем или масса? Ответ: масса.

Все молекулы газа, попавшие на вход в систему, проходят через нее и выбрасываются в атмосферу после прохождения второго поплавкового ротаметра. Молекулы как раз и являются носителями массы газа.

При этом удельный объем (расстояние между молекулами газа) в разных частях системы изменяется вместе с давлением.

Здесь следует вспомнить, что газы сжимаемы, чем выше давление, тем меньше объем занимает газ (закон Бойля-Мариотта). Характерный пример: цилиндр емкостью 1 литр, герметично закрытый подвижным поршнем малого веса. Внутри него содержится 1 литр воздуха при давлении порядка 1 бар (абс).

Масса такого объема воздуха при температуре равной 20°С составляет 1,205 г. Если переместить поршень на половину расстояния до дна, то объем воздуха в цилиндре сократится наполовину и составит 0,5 литра, а давление повысится до 2 бар (абс), но масса газа не изменится и по-прежнему составит 1,205 г.

Ведь общее количество молекул воздуха в цилиндре не изменилось.

Возвратимся к нашей системе. Массовый расход (количество молекул газа, проходящих через любое поперечное сечение в единицу времени) в системе постоянен. При этом давление в разных частях системы отличается.

На входе в систему, внутри первого поплавкового ротаметра и в измерительной части расходомера EL-FLOW давление составляет порядка 0,6 бар (изб). В то время, как на выходе EL-FLOW и внутри второго поплавкового ротаметра давление практически атмосферное.

Удельный объем газа на входе ниже, чем на выходе. Получается, что и объемный расход газа на входе ниже, чем на выходе.

Эти рассуждения подтверждаются и показаниями расходомеров. Расходомер EL-FLOW измеряет и поддерживает массовый расход воздуха на уровне 2 н.л/мин. Поплавковые ротаметры измеряют объемный расход при рабочих условиях.

Для ротаметра на входе это: давление 0,6 бар (изб) и температура 21°С; для ротаметра на выходе: 0 бар (изб), 21°С. Также понадобится атмосферное давление: 97,97 кПа (абс). Для корректного сравнения показаний объемного расхода, все показания должны быть приведены к одним и тем же условиям.

Возьмем в качестве таковых «нормальные условия» расходомера EL-FLOW: 101,325 кПа (абс) и температура 0°С.

Пересчет показаний поплавковых ротаметров в соответствии с методикой поверки ротаметров ГОСТ 8.122-99 осуществляется по формуле:

 , где Q – расход при рабочих условиях; Р и Т – рабочие давление и температура газа; QС – расход при условиях приведения; Рс и Тс – давление и температура газа, соответствующие условиям приведения.

Пересчет показаний ротаметра на входе к нормальным условиям по этой формуле даёт значение расхода 1,985 л/мин, а ротаметра на выходе – 1,990 л/мин. Теперь разброс показаний расходомеров не превышает 0,75%, что при точности ротаметров 3% ВПИ является отличным результатом.

Из приведенного примера видно, что объемный расход сильно зависит от рабочих условий. Мы показали зависимость от давления, но в той же мере объемный расход зависит и от температуры (закон Гей-Люссака).

Даже в технологической схеме, имеющей один вход и один выход, где отсутствуют утечки и накопление газа, показания объемного расходомера будут сильно зависеть от конкретного места установки.

Хотя массовый расход будет одним и тем же в любой точке такой схемы.

Хорошо понимать физику процесса. Но, все же, какой расходомер выбрать: объемного расхода или массового? Ответ зависит от конкретной задачи.

Каковы требования технологического процесса, с каким газом необходимо работать, величина измеряемого расхода, точность измерений, рабочие температура и давление, особые правила и нормы, действующие в Вашей сфере деятельности, и, наконец, отведенный бюджет.

Также следует учитывать, что многие расходомеры, измеряющие объемный расход, могут комплектоваться датчиками температуры и давления. Они поставляются вместе с корректором, который фиксирует показания расходомера и датчиков, а затем приводит показания расходомера к стандартным условиям.

Но, тем не менее, можно дать общие рекомендации. Массовый расход важен тогда, когда в центре внимания находится сам газ, и необходимо контролировать количество молекул, не обращая внимания на рабочие условия (температура, давление). Здесь можно отметить динамическое смешение газов, реакторные системы, в том числе каталитические, системы коммерческого учета газов.

Измерение объемного расхода необходимо в случаях, когда основное внимание уделяется тому, что находится в объеме газа. Типичные примеры – промышленная гигиена и мониторинг атмосферного воздуха, где необходимо проводить количественную оценку загрязнений в объеме воздуха в реальных условиях.

Источник: https://www.massflow.ru/info/obemnyy-i-massovyy-rashod-gaza/

Свойства воздуха. Энергия движущегося воздуха

Объем воздуха от давления

Небольшое введение о рабочей среде пневматических систем – воздухе.

Большая часть цехов на современных производствах снабжены разветвленной системой сжатого воздуха, который подается в помещения при относительно низких давлениях, обычно не превышающих 1МПа (10бар). Его подвод на рабочее место достаточно прост и осуществляется с помощью гибких трубопроводов небольшого сечения.

Поскольку жидкости и газы, обычно используемые на практике, мало загрязняют атмосферу, при их применении в производстве не требуется особенно тщательной герметизации пневматических систем. Это позволяет устанавливать на рабочем месте достаточно простые и недорогие устройства.

Пневматические системы по мощности на единицу массы занимают промежуточное место между электрическими и гидравлическими системами и имеют ряд преимуществ. В частности, их функционирование малочувствительно к облучению и экстремальным температурам (как низким, так и высоким).

Обслуживание материальной части довольно просто и может быть обеспечено малоквалифицированным персоналом.

Однако сжатый воздух имеет не только преимущества перед другими средами, но и недостатки. Он практически не обладает никакими смазывающими свойствами, что ведет к возникновению сухого трения достаточно большой величины. Кроме того, воздух всегда содержит определенную концентрацию паров воды.

Последние конденсируются на стенках системы в виде влаги, которая удаляется с большим трудом. Эти обстоятельства являются важным фактором, поскольку очень часто влага оказывает вредное воздействие.

Наконец, движение воздуха с большими скоростями часто сопровождается шумом, особенно в случае выпуска его в атмосферу.

Основным параметром газообразной среды является ее сжимаемость. Она характеризуется силой упругости, которая сообщает пневматическим системам определенную способность выдерживать случайные перегрузки. Но в то же время сжимаемость порождает склонность к возникновению в такой системе динамических колебаний, которые очень трудно подавить, чтобы создать качественный привод.

Из книги П.Андре Ж-М.Кофман Ф.Лот Ж-П.Тайар «Конструирование роботов»

Рабочим телом в пневматических системах управления является сжатый воздух, представляющий собой механическую смесь азота, кислорода и других газов, содержащихся в небольшом количестве (аргон, углекислый газ и г. д.), а также водяного пара.

Воздух, содержащий водяные пары, характеризуется абсолютной и относительной влажностью. Абсолютная влажность определяется количеством водяного пара в единице объема воздуха.

Отношение абсолютной влажности к максимальному количеству пара, которое могло бы содержаться в единице объема воздуха при тех же температуре и давлении, называют относительной влажностью. На практике при термодинамических расчетах используют параметры сухого воздуха.

Поправку на влажность вносят только при особых требованиях к точности.

Основными и наиболее распространенными параметрами, характеризующими состояние сжатого воздуха, являются давление, температура и удельный объем (или плотность).

Давление

Давление P представляет собой силу, действующую по нормали к поверхности тела и отнесенную к единице площади этой поверхности.

Атмосферным давлением условно принято считать давление, которое уравновешивается столбом ртути высотой 760 мм, что соответствует среднему давлению атмосферы на уровне моря.

Давление, отсчитываемое от величины атмосферного давления, называют избыточным или манометрическим. Его измеряют манометрами и указывают в технических характеристиках пневматических устройств.

В теоретические зависимости всегда подставляют абсолютное давление, которое равно сумме избыточного и атмосферного (барометрического) давлений и является параметром состояния газа.

В системе СИ единицей измерения давления служит паскаль (Па). Паскаль равен давлению, вызываемому силой в 1Н (ньютон), равномерно распределенной по нормальной к ней поверхности площадью 1м2. 1Па = 1Н/м2.

Соотношение между основными единицами давления приведены в таблице:

Единица измерения

Единица измерения

Пакгс/см2барpsiмм рт. ст.мм вод. ст.
Па11,02*10-510-51,45*10-47,5*10-30,102
кгс/см29,81*10410,9814,22735,6104
бар1051,02114,57501,02*104
psi6,9*1030,070,069151,71703
мм рт. ст.133,31,36*10-31,33*10-319,34*10-3113,6
мм вод. ст.9,8110-49,81*10-51,42*10-37,36*10-21

Параметром состояния газа является также абсолютная температура Т, отсчет которой ведут от абсолютного нуля, лежащего на 273° ниже нуля по шкале Цельсия, т.е. T = t°+273°, где t — температура в градусах Цельсия. Абсолютную температуру T измеряют в Кельвинах (К). Эта величина входит во все термо- и газодинамические зависимости.

Для измерения температуры наибольшее распространение получила международная стоградусная шкала — шкала Цельсия (в которой 0°С — точка плавления льда, а 100°С — точка кипения воды при атмосферном давлении), применяют и другие шкалы (см. таблицу ниже).

ШкалаШкала
Кельвина, КЦельсия, °СФаренгейта, °FРеомюра, °R
Кельвина, К1t°C + 273(t°F-32)/1,8 + 2731,25t°R + 273
Цельсия, °Сt°K – 2731(t°F-32)/1,81,25t°R
Фаренгейта, °F1,8t°K – 4591,8t°C + 3219/4 t°R + 32
Реомюра, °R0,8t°K – 2180,8t°C9/4 (t°F – 32)1

Удельный объем

Удельный объем представляет собой объем, занимаемый единицей массы вещества (м3/кг)ν — V/m,

где V и m — соответственно объем и масса газа.

Величину, обратную удельному объему, называют плотностью ρ= 1/ν = m/V.

Иногда используют понятие удельного веса, под которым понимают вес вещества в единице его объема

γ= ρg , где g – ускорение свободного падения.

Параметры состояния газа ρ, ν, T однозначно связаны между собой уравнением состояния, вид которого в общем случае зависит от свойств газа:

F (P, ρ, Т) = 0.

Законы идеального газа.

Законы идеального газа. Сжатый воздух обычно рассматривают как идеальный газ, т. е. газ, у которого отсутствуют силы сцепления между молекулами, а молекулы являются материальными точками, не имеющими объема. Идеальный газ подчиняется следующим законам:

  • Закон Бойля-Мариотта: при постоянной температуре газа PV = const.
  • Закон Гей-Люссака: при постоянном давлении V/T = const.
  • Закон Шарля: при постоянном объеме газа P/T = const.

Все эти уравнения объединены в одно, которое является уравнением состояния идеального газа и называется уравнением Клайперона pV = mRT, или для единицы массы газа рν = RT.

Коэффициент пропорциональности R называется удельной газовой постоянной идеального газа массой 1кг, совершающего работу 1Дж при повышении температуры на 1К. Его значение зависит только от свойств газа. Для сухого воздуха R =287 Дж/(кг*К).

Реальный газ отличается от идеального в основном наличием сил внутреннего трения. Чем выше плотность реального газа, тем более он отличается от идеального. Динамический коэффициент вязкости ηд, Па*с, который определяется силами внутреннего трения, связан с кинематическим коэффициентом вязкости νk, м2/с, следующей зависимостью: νk= ηд/ρ.

Вязкость воздуха зависит от температуры следующим образом:

ηд1 = ηд ( T1/273)0,75 , где ηд1 – динамический коэффициент вязкости при температуре 273К (0°С).

Из справочника «Пневматические устройства и системы в машиностроении» под ред. Е.В.ГЕРЦ

Источник: https://pneumoprivod.ru/public/pbl_air.htm

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.