Зависимость точки кипения от давления

§ 34. Кипение. Зависимость температуры кипения от давления [1975 Ковалев П.Г., Хлиян М.Д. – Физика (молекулярная физика, электродинамика)]

Зависимость точки кипения от давления

Новости    Библиотека    Энциклопедия    Биографии    Ссылки    Карта сайта    О сайте

Парообразование может происходить не только в результате испарения, но и при кипении. Рассмотрим кипение с энергетической точки зрения.

В жидкости всегда растворено некоторое количество воздуха. При нагревании жидкости количество растворенного в ней газа уменьшается, вследствие чего часть его выделяется в виде маленьких пузырьков на дне и стенках сосуда и на взвешенных в жидкости нерастворенных твердых частичках.

Происходит испарение жидкости во внутрь этих воздушных пузырьков. Со временем пары в них становятся насыщенными. При дальнейшем нагревании увеличиваются давление насыщенного пара внутри пузырьков и их объем.

Когда давление пара внутри пузырьков становится равным атмосферному, они под действием выталкивающей силы Архимеда поднимаются на поверхность жидкости, лопаются, и из них выходит пар.

Парообразование, происходящее одновременно и с поверхности жидкости и внутри самой жидкости в воздушные пузырьки, называется кипением. Температура, при которой давление насыщенных паров в пузырьках становится равно внешнему давлению, называется температурой кипения.

Так как при одинаковых температурах давления насыщенных паров разнообразных жидкостей разные, то при различных температурах они становятся равными атмосферному давлению.

Это приводит к тому, что разные жидкости кипят при различных температурах. Данное свойство жидкостей используется при возгонке нефтепродуктов.

При нагревании нефти первыми испаряются наиболее ценные, летучие ее части (бензин), которые таким образом отделяются от “тяжелых” остатков (масел, мазута).

Рис. 37. Зависимость температуры кипения жидкости от давления

Из того, что кипение наступает, когда давление насыщенных паров равно внешнему давлению на жидкость, следует, что температура кипения жидкости зависит от внешнего давления. Если оно увеличено, то жидкость кипит при более высокой температуре, так как для достижения такого давления насыщенным парам необходима более высокая температура.

Наоборот, при пониженном давлении жидкость кипит при более низкой температуре. В этом можно убедиться на опыте. Нагреем воду в колбе до кипения и уберем спиртовку (рис. 37, а). Кипение воды прекращается.

Закрыв пробкой колбу, начнем насосом удалять из нее воздух и пары воды, уменьшая тем самым давление на воду, которая в”результате этого закипает. Заставив ее кипеть в открытой колбе, накачиванием воздуха в колбу увеличим давление на воду (рис. 37, б). Кипение ее прекращается.

При давлении 1 атм вода кипит при 100° С, а при 10 атм – при 180° С. Эта зависимость используется, например в автоклавах, в медицине для стерилизации, в кулинарии для ускорения варки пищевых продуктов.

Чтобы жидкость начала кипеть, ее следует нагреть до температуры кипения. Для этого надо жидкости сообщить энергию, например количество теплоты Q = cm(t°к – t°0). При кипении температура жидкости остается постоянной.

Так происходит потому, что сообщаемое при кипении количество теплоты затрачивается не на увеличение кинетической энергии молекул жидкости, а на работу разрыва молекулярных связей, т. е. на парообразование. При конденсации пар по закону сохранения энергии отдает в окружающую среду такое количество теплоты, которое было затрачено на парообразование.

Конденсация происходит при температуре кипения, которая в процессе конденсации остается постоянной. (Объясните почему).

Составим уравнение теплового баланса при парообразовании и конденсации. Пар, взятый при температуре кипения жидкости, по трубке А. поступает в воду, находящуюся в калориметре (рис.

38, а), конденсируется в ней, отдавая ей затраченное на его получение количество теплоты. Вода и калориметр получают при этом количество теплоты не только от конденсации пара, но и от жидкости, которая при этом получается из него.

Данные физических величин приведены в табл. 3.

Таблица 3

Конденсирующийся пар отдал количество теплоты Qп = rm3 (рис. 38, б). Жидкость, полученная из пара, охладившись от t°3 до θ°, отдала количество теплоты Q3 = c2m3 (t3° – θ°).

Рис. 38. К выводу уравнения теплового баланса при кипении и конденсации

Калориметр и вода, нагреваясь от t°2 до θ° (рис. 38, в), получили количество теплоты

Q1 = c1m1(θ° – t°2); Q2 = c2m2(θ° – t°2).

На основании закона сохранения и превращения энергии

Qп + Q3 = Q1 + Q2,

или

rm3 + c2m3 (t°2 – θ°) = c1m1(θ° – t°2) + c2m2(θ° – t°2).

Это уравнение называется уравнением теплового баланса при парообразовании и конденсации.

Задача 14. Перед тем как подать бревно в лесопильную раму, его в зимнее время освобождают от снега и льда, для чего оно некоторое время находится в бассейне, вода которого подогревается паром.

Рассчитать, какое количество 100-градусного пара расходуется за смену для плавления 5 т снега и льда и нагревания воды, полученной из них. Температура воздуха -20° С; конечная температура воды в бассейне стала 30° С.

Масса воды в бассейне 10 т, при работе бассейна ее температура повышается на 5° С.

Рис. 39. К задаче 14

По закону сохранения энергии:

Отсюда

Вычислим

Отв.: m1 ≈ 900 кг.

Источник: http://www.physiclib.ru/books/item/f00/s00/z0000051/st035.shtml

Зависимость температуры кипения фреонов от давления

Зависимость точки кипения от давления

Температура фреона, °C:
Давление, bar:
Фреон:

  t °C  R22 R12 R134 R404a R502 R407c R717 R410a -70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

70

80

90

-0,81-0,88-0,92-0,74-0,72-0,89-0,65
-0,74-0,83-0,88-0,63-0,62-0,84-0,51
-0,63-0,77-0,84-0,52-0,51-0,74-0,78-0,36
-0,49-0,69-0,77-0,35-0,35-0,63-0,69-0,22
-0,35-0,61-0,70-0,18-0,19-0,52-0,590,08
-0,2-0,49-0,59-0,11-0,14-0,34-0,440,25
0,05-0,36-0,480,320,30-0,16-0,280,73
0,25-0,18-0,320,680,64-0,06-0,241,22
0,640,00-0,151,040,980,370,191,71
1,050,26-0,061,531,450,750,552,35
1,460,510,332,021,911,120,902,98
2,010,850,672,672,531,641,413,85
2,551,191,013,323,142,161,914,72
3,271,641,474,183,942,872,65,85
3,982,081,935,034,733,573,296,98
4,892,662,546,115,734,434,228,37
5,803,233,147,186,735,285,159,76
6,953,953,938,527,976,466,3611,56
8,104,674,729,869,207,637,5713,35
9,55,395,7111,510,709,149,1215,00
10,906,456,7013,1412,1910,6510,6716,65
12,607,537,9315,1313,9812,4512,6119,78
14,308,609,1617,1115,7714,2514,5522,90
16,310,2510,6719,5117,8916,4816,9426,2
18,3011,9012,1821,9020,0118,7019,3329,50
20,7513,0814,0024,7622,5121,4522,24
23,2014,2515,8127,6225,0124,2025,14
29,0017,8520,1630,9232,12
22,0425,3240,40
26,8831,4350,14
  t °C  R507a R600a R600 R23 R290 R142b R406a R409A -70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

70

80

90

-0,720,94
-0,611,48-0,94
-0,502,12-0,9
-0,322,89-0,83
-0,143,8-0,8
-0,024,86-0,66
0,39-0,716,090,12-0,62
0,77-0,627,510,37-0,4
1,15-0,539,120,68-0,2
1,67-0,3810,961,03-0,10,06
2,18-0,27-0,5513,041,440,20,32
2,86-0,18-0,4415,371,910,40,62
3,540,09-0,3117,962,4500,80,98
4,420,33-0,1620,853,060,221,11,4
5,290,570,02243,750,471,61,88
6,400,890,2327,544,520,752,12,43
7,511,210,4731,375,381,082,63,07
8,881,620,7535,566,331,463,33,78
10,252,021,0640,117,391,94,04,59
11,942,541,4245,038,552,384,85,5
13,633,051,829,822,945,76,51
15,693,692,2711,213,556,77,64
17,744,322,7712,734,257,88,88
20,255,093,3314,385,029,110,26
22,755,863,9516,165,8710,411,76
25,806,794,6318,086,8111,913,41
28,857,725,3820,147,8513,615,2
9,917,1024,7210,2317,319,26
9,1229,9413,0721,523,99
11,535,8216,429,43

Указано относительное давление в bar. R22 — по данным Du Pont de Nemours

R404a — по данным Elf Atochem

R507 — по данным ICI Остальные — по данным «Учебник по холодильной технике» Польман

Скачать таблицу в Word

Контакты

Компания ООО Ксирон-ХолодРоссия г. Ивантеевка, Санаторный проезд, дом 1, корпус 23, 141281 Почтовый адрес: Санаторный проезд, дом 1, г.Ивантеевка, Московская область, 141281Телефон: (495) 984-74-92; (495) 226-51-87;Email: info@xiron.ruМы работаем ежедневно с 9:00 до 18:00, кроме выходных.Прием заявок на сайте — круглосуточно ИНН 5038123297 ОГРН 1165038054565 E-mail: Отправить заявкуОтзывы/СертификатыПостроить маршрут с помощью: Яндекс картыДоставка: осуществляем отправку оборудования по России и в страны СНГ.

Схема проезда

Источник: http://www.xiron.ru/content/view/10/27/

Кипение. Удельная теплота парообразования и конденсации. урок. Физика 8 Класс

Зависимость точки кипения от давления

Тема: Агрегатные состояния вещества

Урок: Кипение. Удельная теплота парообразования и конденсации

На прошлом уроке мы уже рассмотрели один из видов парообразования – испарение – и выделили свойства этого процесса. Сегодня мы обсудим такой вид парообразования, как процесс кипения, и введем величину, которая численно характеризует процесс парообразования – удельная теплота парообразования и конденсации.

Определение.Кипение (рис. 1) – это процесс интенсивного перехода жидкости в газообразное состояние, сопровождающийся образованием пузырьков пара и происходящий по всему объему жидкости при определенной температуре, которую называют температурой кипения.

Рис. 1. Кипение (Источник)

Сравним два вида парообразования между собой. Процесс кипения более интенсивен, чем процесс испарения.

Кроме того, как мы помним, процесс испарения протекает при любой температуре выше температуры плавления, а процесс кипения – строго при определенной температуре, которая является различной для каждого из веществ и называется температурой кипения.

Еще следует отметить, что испарение происходит только со свободной поверхности жидкости, т. е. с области, разграничивающей ее с окружающими газами, а кипение – сразу со всего объема.

Более подробно рассмотрим протекание процесса кипения. Представим ситуацию, с которой многие из нас неоднократно сталкивались, – это нагревание и кипячение воды в некотором сосуде, например, в кастрюле.

В ходе нагревания воде будет передаваться определенное количество теплоты, что будет приводить к увеличению ее внутренней энергии и увеличению активности движения молекул.

Этот процесс будет протекать до определенного этапа, пока энергия движения молекул не станет достаточной для начала кипения.

В воде присутствуют растворенные газы (или другие примеси), которые выделяются в ее структуре, что приводит к так называемому возникновению центров парообразования. Т. е.

именно в этих центрах начинает происходить выделение пара, и по всему объему воды образовываются пузырьки, которые наблюдаются при кипении. Важно понимать, что в этих пузырьках находится не воздух, а именно пар, который образовывается в процессе кипения.

После образования пузырьков количество пара в них растет, и они начинают увеличиваться в размерах.

Зачастую, изначально пузырьки образуются вблизи стенок сосуда и не сразу поднимаются на поверхность; сначала они, увеличиваясь в размерах, оказываются под воздействием нарастающей силы Архимеда, а затем отрываются от стенки и поднимаются на поверхность, где лопаются и высвобождают порцию пара.

Стоит отметить, что далеко не сразу все пузырьки пара достигают свободной поверхности воды. В начале процесса кипения вода прогрета еще далеко не равномерно и нижние слои, вблизи которых происходит непосредственно процесс теплопередачи, еще горячее верхних, даже с учетом процесса конвекции.

Это приводит к тому, что поднимающиеся снизу пузырьки пара схлопываются из-за явления поверхностного натяжения, еще не доходя до свободной поверхности воды. При этом пар, который находился внутри пузырьков, переходит в воду, тем самым дополнительно нагревая ее и ускоряя процесс равномерного прогрева воды по всему объему.

В результате, когда вода прогревается практически равномерно, почти все пузырьки пара начинают достигать поверхности воды и начинается процесс интенсивного парообразования.

Важно выделить тот факт, что температура, при которой проходит процесс кипения, остается неизменной даже в том случае, если увеличивать интенсивность подвода тепла к жидкости.

Простыми словами, если в процессе кипения прибавить газ на конфорке, которая разогревает кастрюлю с водой, то это приведет только к увеличению интенсивности кипения, а не к увеличению температуры жидкости.

Если углубляться более серьезно в процесс кипения, то стоит отметить, что в воде возникают области, в которых она может быть перегрета выше температуры кипения, но величина такого перегрева, как правило, не превышает одного-пары градусов и незначительна в общем объеме жидкости. Температура кипения воды при нормальном давлении составляет 100°С.

В процессе кипения воды можно заметить, что он сопровождается характерными звуками так называемого бурления. Эти звуки возникают как раз из-за описанного процесса схлопывания пузырьков пара.

Процессы кипения других жидкостей протекают аналогичным образом, что и кипение воды. Основное отличие в этих процессах составляют различные температуры кипения веществ, которые при нормальном атмосферном давлении являются уже измеренными табличными величинами. Укажем основные значения этих температур в таблице.

Вещество
Вода100
Спирт78
Ртуть357
Железо2860
Кислород–183
Водород–253

Интересен тот факт, что температура кипения жидкостей зависит от величины атмосферного давления, поэтому мы и указывали, что все значения в таблице приведены при нормальном атмосферном давлении. При возрастании давления воздуха возрастает и температура кипения жидкости, при уменьшении, наоборот, уменьшается.

На этой зависимости температуры кипения от давления окружающей среды основан принцип работы такого известного кухонного прибора, как скороварка (рис. 2).

Она представляет собой кастрюлю с плотно закрывающейся крышкой, под которой в процессе парообразования воды давление воздуха с паром достигает значения до 2 атмосферных давлений, что приводит к увеличению температуры кипения воды в ней до .

Из-за этого вода с продуктами в ней имеют возможность нагреться до температуры выше, чем обычно (), и процесс приготовления ускоряется. Из-за такого эффекта устройство и получило свое название.

Рис. 2. Скороварка (Источник)

Ситуация с уменьшением температуры кипения жидкости с понижением атмосферного давления также имеет пример из жизни, но уже не повседневной для многих людей. Относится такой пример к путешествиям альпинистов в высокогорных районах.

Оказывается, что в местности, находящейся на высоте 3000–5000 м, температура кипения воды из-за уменьшения атмосферного давления снижается до  и более низких значений, что приводит к сложностям при приготовлении пищи в походах, т. к. для эффективной термической обработки продуктов в таком случае требуется значительно большее время, чем при нормальных условиях.

На высотах около 7000 м температура кипения воды доходит до , что приводит к невозможности приготовления многих продуктов в таких условиях.

На том, что температуры кипения различных веществ отличаются, основаны некоторые технологии разделения веществ.

Например, если рассматривать нагревание нефти, которая представляет собой сложную жидкость, состоящую из множества компонентов, то в процессе кипения ее можно будет разделить на несколько различных веществ.

В данном случае, благодаря тому, что температуры кипения керосина, бензина, лигроина и мазута различны, их можно отделить друг от друга путем парообразования и конденсации при различных температурах. Такой процесс, как правило, называют разделением на фракции (рис. 3).

Рис. 3 Разделение нефти на фракции (Источник)

Как и любой физический процесс, кипение необходимо характеризовать с помощью какой-то численной величины, такую величину называют удельной теплотой парообразования.

Для того чтобы понять физический смысл этой величины, рассмотрим следующий пример: возьмем 1 кг воды и доведем ее до температуры кипения, затем замерим, какое количество теплоты необходимо для того, чтобы полностью испарить эту воду (без учета тепловых потерь) – эта величина и будет равна удельной теплоте парообразования воды. Для другого вещества это значение теплоты будет другим и будет являться удельной теплотой парообразования этого вещества.

Удельная теплота парообразования оказывается очень важной характеристикой в современных технологиях производства металлов. Оказывается, что, например, при плавлении и испарении железа с его последующей конденсацией и затвердеванием образуется кристаллическая решетка с такой структурой, которая обеспечивает более высокую прочность, чем исходный образец.

Обозначение:  удельная теплота парообразования и конденсации (иногда обозначается ).

Единица измерения: .

Удельная теплота парообразования веществ определяется с помощью экспериментов в лабораторных условиях, и ее значения для основных веществ занесены в соответствующую таблицу.

Вещество
Вода
Спирт
Ртуть
Воздух (жидкий)

Если известно, что вещество находится при температуре кипения, то для вычисления количества теплоты, необходимого для превращения его в газообразное состояние используют следующую формулу:

Обозначения:

 количество теплоты парообразования, Дж;

 удельная теплота парообразования и конденсации, ;

 масса вещества, кг.

В случае рассмотрения процесса конденсации вещества формула, описывающая количество теплоты, остается такой же, но берется со знаком минус, что подчеркивает выделение тепла в процессе конденсации, в отличие от поглощения тепла в процессе кипения, однако, зачастую этот минус не учитывается, если находится модуль количества теплоты.

На следующем уроке мы уделим внимание решению задач.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Стр. 45: вопросы № 1–3; стр. 51: вопросы № 1–5, упражнение № 10. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. Какое количество теплоты нужно затратить для превращения в пар 100 г воды, 50 г спирта, 12 г эфира? Жидкости находятся при температуре кипения.
  3. Любое кипение одновременно является парообразованием, а всякое ли парообразование является кипением? Какое явление встречается чаще?
  4. В кастрюлю налито 2 л воды при температуре . После закипания в кастрюле оказалось на 200 г меньше воды, чем в начале нагревания. Сколько тепла получила вода в кастрюле?
  5. В открытой кастрюле с гладкими стенками и дном можно, осторожно нагревая, довести чистую воду (без крупинок и растворенного воздуха) до температуры свыше . Но почему вода не закипает?

Источник: https://interneturok.ru/lesson/physics/8-klass/bagregatnye-sostoyaniya-vewestvab/kipenie-udelnaya-teplota-paroobrazovaniya-i-kondensatsii

Явления на границе раздела двух сред

Зависимость точки кипения от давления

Непосредственные наблюдения за поведением жидкости свидетельствуют, что при некоторых температуре и давлении в жидкостях начинается процесс кипения. Разберемся в механизме этого явления.

Обычно в жидкости или на стенках сосуда, в котором она находится, присутствуют пузырьки растворенного в ней воздуха. При нагревании жидкости растворимость содержащихся в ней газов понижается. В результате число таких пузырьков значительно увеличивается.

Газовые пузырьки в процессе закипания играют роль аналогичную той, которую играют ионы или пылинки при конденсации.

В эти пузырьки происходит испарение окружающей их жидкости, вследствие чего пузырьки наполняются насыщенным паром, давление которого с повышением температуры увеличивается.

Пока температура жидкости такова, что давление насыщенного пара внутри пузырька меньше внешнего давления над жидкостью, пузырек не может расти. При некоторой температуре давление насыщенного пара внутри пузырька становится равным давлению, оказываемому на пузырек извне.

Это давление равно сумме атмосферного давления, гидростатического давления, обусловленного столбом жидкости над пузырьком и дополнительного давления, связанного с кривизной поверхности пузырька (давление Лапласа). Расчеты показывают, что вклад гидростатического давления и давления Лапласа существенной роли в этом процессе не играют.

Чаще всего мы имеем дело с процессом кипения при нормальном атмосферном давлении , а для того чтобы гидростатическое давление вносило вклад, сравнимый с давлением атмосферы, столб воды должен составлять хотя бы несколько метров, чего обычно в реальной ситуации не бывает.

Давление Лапласа существенно тогда, когда радиус пузырьков порядка , что значительно меньше размеров пузырьков, образующихся в процессе кипения.

При некоторой температуре, когда давление насыщенного пара внутри пузырьков становится равным внешнему давлению, точнее говоря, несколько больше, пузырьки, быстро увеличиваясь в размерах, устремляются вверх и прорываются наружу. С этого момента жидкость начинает кипеть.

Рассмотрев механизм закипания жидкости, подчеркнем, что кипение существенно отличается от испарения. Во-первых, испарение происходит при любой температуре, кипение же для каждой жидкости при определенном давлении имеет место при строго определенной температуре, называемой точкой кипения.

Если процесс кипения начался, температура жидкости, несмотря на продолжающееся сообщение теплоты, не повышается. Она так и останавливается на точке кипения до тех пор, пока не выкипит вся жидкость.

Во-вторых, в процессе кипения жидкость испаряется не только с поверхности, но и с поверхности пузырьков внутри жидкости.

Итак, для того, чтобы жидкость закипела, нужно довести ее температуру до такого значения, при котором давление насыщенного пара внутри содержащихся в жидкости пузырьков хотя бы чуточку превышало внешнее давление.

Из приведенных рассуждений видно, что с уменьшением внешнего давления должна понижаться и температура кипения жидкости.

Принято считать, что точке кипения воды при нормальном атмосферном давлении соответствует температура 100º С. Однако жителям высокогорных селений хорошо известен факт закипания воды при значительно более низкой температуре. Так на вершине Эльбруса вода закипает уже при 82º С.

Физическим фактором, ответственным за изменение температуры кипения, является уменьшение внешнего давления в высокогорных районах. Вода кипит при 100º С только при давлении 760 мм Hg. При давлении 0,5 атм она закипает при 82º С, а при давлении 10-15 мм Hg вода закипает в интервале температур 10-15º С.

Можно получить даже “кипяток”, имеющий температуру замерзающей воды. Для этого придется понизить внешнее давление до 4,6 мм Hg.

Интересный результат можно наблюдать, если в колбу поместить небольшое количество воды при комнатной температуре и начать откачивать из колбы воздух. Исход опыта зависит от скорости откачки. Если откачка производится достаточно медленно, то вода должна рано или поздно закипеть.

Если же откачка производится достаточно быстро, то вода, напротив, замерзает. В результате откачки воздуха, а вместе с ним и паров воды, усиливается процесс испарения, в ходе которого вода остывает.

При медленной откачке понижение температуры жидкости компенсируется за счет поступления теплоты извне, поэтому температура вода остается постоянной. Если же откачка производится быстро, то вода не успевает получить тепло от окружающей среды.

Так как температура воды начинает понижаться, возможность ее закипания также уменьшается. Дальнейшее продолжение быстрой откачки воздуха из колбы со временем приведет к понижению температуры жидкости до точки замерзания.

Отмечая факт понижения температуры кипения с уменьшением давления, естественно ожидать, что с повышением давления температура кипения будет повышаться. Действительно, при давлении 15 атм кипение воды начинается при 200º С, а давление в 80 атм вызывает кипение воды даже при 300º С.

Рис. 6.6

Итак, определенному внешнему давлению соответствует своя температура кипения, или каждой температуре кипения соответствует вполне определенное давление. Напомним, что это давление называется упругостью пара (кипение начинается, когда упругость насыщенного пара внутри пузырьков жидкости равна внешнему давлению).

Поэтому кривая, изображающая зависимость температуры кипения от давления, одновременно представляет собой кривую зависимости упругости пара от температуры. Вид этой кривой изображен на рис. 6.6. Из рис. 6.

6 видно, что упругость пара с изменением температуры меняется очень быстро, а температура кипения с изменением давления – довольно медленно. Эта же кривая описывает и процесс конденсации. Превратить пар в воду можно либо сжатием, либо охлаждением.

Только для точек, лежащих на приведенной кривой, возможно одновременное сосуществование жидкости и ее пара. Если исключить теплообмен такой двухфазной системы с окружающей средой, то количество жидкости и пара в закрытом сосуде будет оставаться неизменным.

Таким образом, кривая кипения и конденсации – это кривая равновесия жидкости и пара. Она делит поле диаграммы на две части. Влево и вверх (область высоких температур и невысоких давлений) расположена область устойчивого состояния пара, вправо и вниз – область устойчивого состояния жидкости.

Отметим еще, что кривая равновесия жидкость-пар качественно имеет один и тот же вид для различных жидкостей. Во всех случаях упругость пара быстро растет с повышением температуры.

Источник: https://ido.tsu.ru/schools/physmat/data/res/molek/uchpos/text/m6_05.htm

Зависимость температуры кипения воды от давления

Зависимость точки кипения от давления

“И умный человек должен иногда задумываться” Геннадий Малкин

В быту, на примере работы автоклава, можно проследить зависимость температуры кипения воды от давления. Допустим, для приготовления продукта и уничтожения всей опасной живности, включая споры ботулизма, нам необходима температура в 120 °С.  В простой кастрюле такую температуру не получить, вода просто закипит при 100°С. Все верно, при атмосферном давлении 1 кгс/см² (760 мм.рт.ст.

) вода будет кипеть при 100°С. Одним словом, нам надо из кастрюли сделать герметическую емкость, то есть автоклав.  По таблице определяем давление, при котором вода закипит при 120 °С. Это давление равно  2 кгс/см². Но это абсолютное давление, а нам надо манометрическое, большинство манометров показывает избыточное давление. Поскольку абсолютное давление равно сумме избыточного (Ризб.

) и барометрического (Рбар.) т.е. Рабс. = Ризб.+ Рбар, то избыточное давление в автоклаве должно быть не меньше  Ризб = Рабс. – Рбар.= 2-1=1 кгс/см2. Что мы и наблюдаем на вышеприведенном рисунке. Принцип работы заключается в том, что из-за закачивания избыточного давления 0,1 МРа.

при нагреве увеличивается температура стерилизации консервируемых продуктов до 110-120°С, причем вода внутри автоклава не закипает.

Зависимость температуры кипения воды от давления представлена таблицей В.П.Вукаловича

Таблица В.П.Вукаловича

Рti/i//r
0,0106,76,7600,2593,5
0,05032,632,6611,5578,9
0,1045,545,5617,0571,6
0,2059,759,7623,1563,4
0,3068,768,7626,8558,1
0,4075,475,4629,5554,1
0,5080,980,9631,6550,7
0,6085,585,5633,5548,0
0,7089,589,5635,1545,6
0,8093,093.1636,4543,3
0,9096,296,3637,6541,3
1,099,199,2638,8539,6
1,5110,8111,0643,1532,1
2,0119,6120,0646,3526,4
2,5126,8127,2648,7521,5
3,0132,9133,4650,7517,3
3,5138,2138,9652,4513,5
4,0142,9143,7653,9510,2
4,5147,2148,1655,2507,1
5,0151,1152,1656,3504,2
6,0158,1159,3658,3498,9
7,0164,2165,7659,9494,2
8,0169,6171,4661,2489,8

Р – абсолютное давление в ат, кгс/см2; t – температура в оС; i / –  энтальпия кипящей  воды, ккал/кг; i// – энтальпия сухого насыщенного пара, ккал/кг; r – скрытая теплота парообразования, ккал/кг.

Зависимость температуры кипения воды от давления прямопропорциональная, то есть чем больше давление, тем больше и температура кипения. Для лучшего понимания данной зависимости, вам предлагается ответить на следующие вопросы:

1. Что такое перегретая вода? Какая максимальная температура воды возможна в вашей котельной?

2. Чем определяется давление, при котором работает ваш водогрейный котел?

3. Приведите примеры использования зависимости температуры кипения воды от давления в вашей котельной.

4. Причины гидравлических ударов в водяных тепловых сетях. Почему слышится потрескивание в местных системах отопления частного дома и как его избежать?

5. И наконец, что такое скрытая теплота парообразования? Почему мы испытываем, при определенных условиях, в Русской бане непереносимый жар и покидаем парную. Хотя температура в парной  при этом не более 60оС.

Учебное пособие для подготовки оператора газовой котельной  – 350 рублей. Материал хорошо структурирован и опробирован в учебных заведениях по подготовке Операторов котельной. Сделайте подарок себе и знакомым. Будьте  профессионалом!

Источник: http://barbotazh.ru/infoprodukty/uchebnoe-posobie-operatora-gazovoj-kotelnoj/zavisimost-temperatury-kipeniya-vody-ot-davleniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.